Experimental study of a backward bent duct buoy wave energy converter: Effects of the air chamber and center of gravity height

被引:1
|
作者
Zhu, Wenzheng [1 ]
Du, Zhichang [1 ,2 ,3 ]
Tu, Yongqiang [1 ,2 ,3 ]
Huang, Yan [1 ,2 ,3 ]
Liang, Bo [1 ]
Chen, Xiaokun [1 ]
Cao, Gengning [1 ]
Xiao, Shenghong [1 ]
Yang, Shaohui [1 ,2 ,3 ]
机构
[1] Jimei Univ, Coll Marine Equipment & Mech Engn, Xiamen 361021, Peoples R China
[2] Key Lab Ocean Renewable Energy Equipment Fujian Pr, Xiamen 361021, Peoples R China
[3] Key Lab Energy Cleaning Utilizat & Dev Fujian Prov, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Backward-bent duct buoy (BBDB); Oscillating water column (OWC); Air chamber; CWR; PERFORMANCE; MOTION;
D O I
10.1016/j.oceaneng.2024.119447
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The backward-bent duct buoy (BBDB) wave energy converter (WEC) is a floating oscillating water column (OWC) device with high conversion efficiency and low mooring requirements. This study experimentally investigates the effects of air chamber volume, chamber top shape, and center of gravity height on the wave energy capture performance of BBDB WEC. The results indicate that increasing the air chamber's volume enhances conversion performance. When the air chamber volume is increased from 0.0162 m3 3 to 0.0233 m3, 3 , the maximum capture width ratio (CWR) increases by 0.14 and 0.13 at wave amplitudes of 0.015 m and 0.025 m, respectively. An oblique cut prism chamber improves performance under low wave periods. When using a chamber with an inclined top, conversion performance exceeds that of a rectangular chamber, with the maximum CWR increasing from 1.09 to 1.40 at a wave height of 0.015 m and from 0.82 to 1.01 at a wave height of 0.025 m. Additionally, changes in center of gravity height primarily affect conversion efficiency during the pitch resonance period. These findings contribute to the structural optimization and performance enhancement of BBDB WECs.
引用
收藏
页数:11
相关论文
共 9 条
  • [1] Experimental Study on Conversion Efficiency of A Floating OWC Pentagonal Backward Bent Duct Buoy Wave Energy Converter
    Meng Li
    Ru-kang Wu
    Bi-jun Wu
    Yun-qiu Zhang
    China Ocean Engineering, 2019, 33 : 297 - 308
  • [2] Experimental Study on Conversion Efficiency of A Floating OWC Pentagonal Backward Bent Duct Buoy Wave Energy Converter
    LI Meng
    WU Ru-kang
    WU Bi-jun
    ZHANG Yun-qiu
    China Ocean Engineering, 2019, 33 (03) : 297 - 308
  • [3] Experimental Study on Conversion Efficiency of A Floating OWC Pentagonal Backward Bent Duct Buoy Wave Energy Converter
    Li Meng
    Wu Ru-kang
    Wu Bi-jun
    Zhang Yun-qiu
    CHINA OCEAN ENGINEERING, 2019, 33 (03) : 297 - 308
  • [4] Fully coupled simulation of dynamic characteristics of a backward bent duct buoy oscillating water column wave energy converter
    Guo, Peng
    Zhang, Yongliang
    Chen, Wenchuang
    Wang, Chen
    ENERGY, 2024, 294
  • [5] Theoretical and Experimental Study of A Coaxial Double-Buoy Wave Energy Converter
    Li De-min
    Dong Xiao-chen
    Shi Hong-da
    Li Yan-ni
    CHINA OCEAN ENGINEERING, 2021, 35 (03) : 454 - 464
  • [6] NUMERICAL INVESTIGATION OF 2-D OPTIMAL PROFILE OF BACKWARD-BENT DUCT TYPE WAVE ENERGY CONVERTER
    Suzuki, Masami
    Kuboki, Toshiari
    Nagata, Shuichi
    Setoguchi, Toshiaki
    OMAE 2009, VOL 4, PTS A AND B, 2009, : 973 - 982
  • [7] Numerical Investigation of 2D Optimal Profile of Backward-Bent Duct Type Wave Energy Converter
    Suzuki, Masami
    Kuboki, Toshiari
    Nagata, Shuichi
    Setoguchi, Toshiaki
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2011, 133 (04):
  • [8] Numerical calculation and experimental study on straight center pipe spar buoy wave energy model
    Li M.
    Wu B.
    Wu R.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (03): : 80 - 86
  • [9] Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber
    Goncalves, Rafael A. A. C.
    Teixeira, Paulo R. F.
    Didier, Eric
    Torres, Fernando R.
    RENEWABLE ENERGY, 2020, 153 : 1183 - 1193