Subdivision of Adjacent Areas for 3D Point Cloud Semantic Segmentation

被引:0
|
作者
Xu, Haixia [1 ]
Hu, Kaiyu [1 ]
Xu, Yuting [1 ]
Zhu, Jiang [1 ]
机构
[1] Xiangtan Univ, Sch Automat & Elect Informat, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411100, Peoples R China
关键词
Semantic segmentation; 3D point cloud; Global attention; Deep learning; EXTRACTION; NETWORK;
D O I
10.1007/s11760-024-03728-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In 3D point cloud semantic segmentation, much of the previous research has focused on aggregating the fine-grained geometric structures of local regions, overlooking the long-term features. However, global long-term contextual dependencies play a role as important as local features aggregation. This paper proposes a Subdivision of Adjacent Areas (SAA) module, which efficiently mines more informative features to enrich global long-term contextual dependencies. SAA is constructed by the CoVariance-Enhanced Channel Attention (CECA) and the PseudoNL Spatial Attention (PSA). The former learns the interdependence among channels via second-order statistics for each feature channel, while the latter efficiently captures the positional correlation among points in the entire space via a pseudo feature map. The proposed SAA, a plug-and-play, end-to-end trainable module, can be integrated into existing segmentation networks. Extensive experiments on S3DIS and ScanNet datasets demonstrate that networks integrated with our SAA improve mIoU performance. It verifies that SAA is beneficial for 3D point cloud segmentation networks in achieving excellent performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [2] 3D point cloud semantic segmentation: state of the art and challenges
    Wang Y.
    Hu Y.
    Kong Q.
    Zeng H.
    Zhang L.
    Fan B.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (10): : 1653 - 1664
  • [3] A survey on weakly supervised 3D point cloud semantic segmentation
    Wang, Jingyi
    Liu, Yu
    Tan, Hanlin
    Zhang, Maojun
    IET COMPUTER VISION, 2024, 18 (03) : 329 - 342
  • [4] Few-shot 3D Point Cloud Semantic Segmentation
    Zhao, Na
    Chua, Tat-Seng
    Lee, Gim Hee
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8869 - 8878
  • [5] Semantic Context Encoding for Accurate 3D Point Cloud Segmentation
    Liu, Hao
    Guo, Yulan
    Ma, Yanni
    Lei, Yinjie
    Wen, Gongjian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2045 - 2055
  • [6] Semantic and Geometric Labeling for Enhanced 3D Point Cloud Segmentation
    Perez-Perez, Yeritza
    Golparvar-Fard, Mani
    El-Rayes, Khaled
    CONSTRUCTION RESEARCH CONGRESS 2016: OLD AND NEW CONSTRUCTION TECHNOLOGIES CONVERGE IN HISTORIC SAN JUAN, 2016, : 2542 - 2552
  • [7] Transformer Enhanced Hierarchical 3D Point Cloud Semantic Segmentation
    Liu, Yaohua
    Ma, Yue
    Xu, Min
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [8] Investigate Indistinguishable Points in Semantic Segmentation of 3D Point Cloud
    Xu, Mingye
    Zhou, Zhipeng
    Zhang, Junhao
    Qiao, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3047 - 3055
  • [9] Novel Class Discovery for 3D Point Cloud Semantic Segmentation
    Riz, Luigi
    Saltori, Cristiano
    Ricci, Elisa
    Poiesi, Fabio
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9393 - 9402
  • [10] Local Transformer Network on 3D Point Cloud Semantic Segmentation
    Wang, Zijun
    Wang, Yun
    An, Lifeng
    Liu, Jian
    Liu, Haiyang
    INFORMATION, 2022, 13 (04)