3D bioprinting of the airways and lungs for applications in tissue engineering and in vitro models

被引:0
|
作者
Zhang, Yanning [1 ,2 ]
Liu, Yujian [3 ]
Shu, Chen [1 ]
Shen, Yang [1 ]
Li, Mengchao [1 ,4 ]
Ma, Nan [5 ]
Zhao, Jinbo [1 ]
机构
[1] Air Force Med Univ, Affiliated Hosp 2, Dept Thorac Surg, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian, Peoples R China
[3] Cent Theater Command Gen Hosp Chinese Peoples Libe, Dept Cardiothorac Surg, Wuhan, Peoples R China
[4] Yanan Univ, Sch Med, Dept Med Genet & Cell Biol, Yanan, Peoples R China
[5] Air Force Med Univ, Affiliated Hosp 2, Dept Ophthalmol, Xian, Peoples R China
来源
JOURNAL OF TISSUE ENGINEERING | 2024年 / 15卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Bioprinting; bioinks for airways and lungs; tissue engineering; lung disease; trachea; CARTILAGE REGENERATION; MECHANICAL-PROPERTIES; ALVEOLAR EPITHELIUM; ALGINATE HYDROGELS; STEM-CELLS; SCAFFOLDS; TRACHEA; DEFINITIONS; MOBILIZE; PLATFORM;
D O I
10.1177/20417314241309183
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Tissue engineering and in vitro modeling of the airways and lungs in the respiratory system are of substantial research and clinical importance. In vitro airway and lung models aim to improve treatment options for airway and lung repair and advance respiratory pathophysiological research. The construction of biomimetic native airways and lungs with tissue-specific biological, mechanical, and configurable features remains challenging. Bioprinting, an emerging 3D printing technology, is promising for the development of airway, lung, and disease models, allowing the incorporation of cells and biologically active molecules into printed constructs in a precise and reproducible manner to recreate the airways, lung architecture, and in vitro microenvironment. Herein, we present a review of airway and lung bioprinting for applications in tissue engineering and in vitro modeling. The key pathophysiological characteristics of the airway, lung interstitium, and alveoli are described. The bioinks recently used in 3D bioprinting of the airways and lungs are summarized. Furthermore, we propose a bioink categorization based on the structural characteristics of the lungs and airways. Finally, the challenges and opportunities in the research on biofabrication of airways and lungs are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] 3D bioprinting and the current applications in tissue engineering
    Huang, Ying
    Zhang, Xiao-Fei
    Gao, Guifang
    Yonezawa, Tomo
    Cui, Xiaofeng
    BIOTECHNOLOGY JOURNAL, 2017, 12 (08)
  • [2] 3D Bioprinting in Skeletal Muscle Tissue Engineering
    Ostrovidov, Serge
    Salehi, Sahar
    Costantini, Marco
    Suthiwanich, Kasinan
    Ebrahimi, Majid
    Sadeghian, Ramin Banan
    Fujie, Toshinori
    Shi, Xuetao
    Cannata, Stefano
    Gargioli, Cesare
    Tamayol, Ali
    Dokmeci, Mehmet Remzi
    Orive, Gorka
    Swieszkowski, Wojciech
    Khademhosseini, Ali
    SMALL, 2019, 15 (24)
  • [3] 3D Bioprinting Technologies for Tissue Engineering Applications
    Gu, Bon Kang
    Choi, Dong Jin
    Park, Sang Jun
    Kim, Young-Jin
    Kim, Chun-Ho
    CUTTING-EDGE ENABLING TECHNOLOGIES FOR REGENERATIVE MEDICINE, 2018, 1078 : 15 - 28
  • [4] Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine
    Saini, Gia
    Segaran, Nicole
    Mayer, Joseph L.
    Saini, Aman
    Albadawi, Hassan
    Oklu, Rahmi
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (21)
  • [5] Current developments in 3D bioprinting for tissue engineering
    Cornelissen, Dirk-Jan
    Faulkner-Jones, Alan
    Shu, Wenmiao
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2017, 2 : 76 - 82
  • [6] Progress in 3D bioprinting technology for tissue/organ regenerative engineering
    Matai, Ishita
    Kaur, Gurvinder
    Seyedsalehi, Amir
    McClinton, Aneesah
    Laurencin, Cato T.
    BIOMATERIALS, 2020, 226
  • [7] 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid
    Xie, Zelong
    Gao, Ming
    Lobo, Anderson O.
    Webster, Thomas J.
    POLYMERS, 2020, 12 (08)
  • [8] Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications
    Zennifer, Allen
    Senthilvelan, Praseetha
    Sethuraman, Swaminathan
    Sundaramurthi, Dhakshinamoorthy
    CARBOHYDRATE POLYMERS, 2021, 256
  • [9] 3D Bioprinting of Tissue Models with Customized Bioinks
    Vurat, Murat Taner
    Ergun, Can
    Elcin, Ayse Eser
    Elcin, Yasar Murat
    BIOINSPIRED BIOMATERIALS: ADVANCES IN TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 1249 : 67 - 84
  • [10] 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications
    Ning, Liqun
    Sun, Haoying
    Lelong, Tiphanie
    Guilloteau, Romain
    Zhu, Ning
    Schreyer, David J.
    Chen, Xiongbiao
    BIOFABRICATION, 2018, 10 (03)