Large global solutions to the three dimensional compressible flow of liquid crystals

被引:4
|
作者
Zhai, Xiaoping [1 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Peoples R China
关键词
Compressible flow of liquid crystals; Global large solutions; Littlewood-paley theory; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE LIMIT; WELL-POSEDNESS; CRITICAL SPACES; WEAK SOLUTIONS; ENERGY;
D O I
10.1016/j.na.2024.113657
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to provide a class of large initial data which generates global solutions of the compressible flow of liquid crystals in R 3 . This class of data relax the smallness restriction imposed on the initial incompressible velocity. Moreover, the result improve considerably the work by Hu and Wu [SIAM J. Math. Anal., 45 (2013), 2678-2699].
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Global large solutions and incompressible limit for the compressible flow of liquid crystals
    Zhai, Xiaoping
    Chen, Zhi-Min
    APPLICABLE ANALYSIS, 2021, 100 (10) : 2132 - 2146
  • [2] GLOBAL LARGE SOLUTIONS TO THE THREE DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Zhai, Xiaoping
    Li, Yongsheng
    Zhou, Fujun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1806 - 1843
  • [3] ON GLOBAL BEHAVIOR OF WEAK SOLUTIONS OF COMPRESSIBLE FLOWS OF NEMATIC LIQUID CRYSTALS
    Wang, Weiwei
    ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) : 650 - 672
  • [4] GLOBAL STABILITY OF LARGE SOLUTIONS TO THE 3-D COMPRESSIBLE FLOW OF LIQUID CRYSTALS
    Chen, Yuhui
    Huang, Jingchi
    Xu, Haiyan
    Yao, Zheng-An
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 887 - 908
  • [5] Global large solutions to the two-dimensional compressible Navier-Stokes equations
    Zhai, Xiaoping
    Chen, Zhi-Min
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [6] Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals
    Bie, Qunyi
    Cui, Haibo
    Wang, Qiru
    Yao, Zheng-An
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [7] GLOBAL EXISTENCE FOR A CLASS OF LARGE SOLUTIONS TO THREE-DIMENSIONAL COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM
    Hong, Guangyi
    Hou, Xiaofeng
    Peng, Hongyun
    Zhu, Changjiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 2409 - 2441
  • [8] Global classical solutions to the one dimensional free boundary problem for compressible non -isothermal flow with data
    Mei, Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8055 - 8106
  • [9] Global Existence of Classical Solutions with Large Oscillations and Vacuum to the Three-Dimensional Compressible Nematic Liquid Crystal Flows
    Li, Jinkai
    Xu, Zhonghai
    Zhang, Jianwen
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (04) : 2105 - 2145
  • [10] Global large solutions to a multi-dimensional compressible magnetohydrodynamic flows with a nonlinear initial constraint
    Gao, Ningning
    Wu, Jiahong
    Xu, Fuyi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (03)