Leveraging molecular scale free volume generation to improve gas separation performance of carbon molecular sieve membranes

被引:1
|
作者
Schlosser, Steven [1 ]
Qiu, Wulin [1 ]
Liu, Zhongyun [1 ]
Campbell, Zachary S. [1 ]
Koros, William J. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr, Atlanta, GA 30332 USA
关键词
Gas separations; Carbon molecular sieve membranes; Porous materials; Natural gas purification; ENTROPIC SELECTIVITY; POLYMERS; SORPTION; PYROLYSIS; TRANSPORT; EVOLUTION;
D O I
10.1016/j.memsci.2024.123564
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Carbon molecular sieve (CMS) membranes have proven to be promising candidates for next-generation gas separations. Modification of polymeric precursors is a critical tool that permits fine-tuning of CMS structure and performance for a wide variety of gas mixtures. Here, we make a targeted alteration to a polyimide CMS precursor through substitution of free-volume-generating trifluoromethyl groups for aliphatic methyl groups on the polymer backbone. Gas separation performance shows a vast improvement, demonstrated by up to an eightfold increase in gas permeability as well as higher mixed gas separation factors in some cases. We investigate these properties, and their dependence on pyrolysis temperature, with detailed measurements of gas sorption and permeation in CMS dense film membranes with additional analysis through classical materials characterization methods. Our observations indicate that addition of free-volume-generating groups into polymeric precursors is a powerful tool for developing state-of-the-art CMS membranes, especially in cases when high permeability is an important design parameter.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Carbon molecular sieve membrane for gas separation
    Haraya, K
    SEN-I GAKKAISHI, 2000, 56 (01) : P20 - P24
  • [22] Hollow Fiber Carbon Molecular Sieve Membranes for Gas Separation: A Mini Review
    Nie, Jing
    Li, Haibo
    CURRENT NANOSCIENCE, 2024, 20 (02) : 174 - 187
  • [23] Cellulose-Based Carbon Molecular Sieve Membranes for Gas Separation: A Review
    Araujo, Tiago
    Bernardo, Gabriel
    Mendes, Adelio
    MOLECULES, 2020, 25 (15):
  • [24] A review of polymer-derived carbon molecular sieve membranes for gas separation
    Li, Hao-jie
    Liu, Yao-dong
    NEW CARBON MATERIALS, 2022, 37 (03) : 484 - 507
  • [25] The gas separation performance adjustment of carbon molecular sieve membrane depending on the chain rigidity and free volume characteristic of the polymeric precursor
    Hu, Chun-Po
    Polintan, Clarisse K.
    Tayo, Lemmuel L.
    Chou, Shang-Chih
    Tsai, Hui-An
    Hung, Wei-Song
    Hu, Chien-Chieh
    Lee, Kueir-Rarn
    Lai, Juin-Yih
    CARBON, 2019, 143 : 343 - 351
  • [26] Effect of MFI zeolite intermediate layers on gas separation performance of carbon molecular sieve (CMS) membranes
    Wey, Ming-Yen
    Tseng, Hui-Hsin
    Chiang, Chian-kai
    JOURNAL OF MEMBRANE SCIENCE, 2013, 446 : 220 - 229
  • [27] A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application
    Rao, Popuri Srinivasa
    Wey, Ming-Yen
    Tseng, Hui-Hsin
    Kumar, Itta Arun
    Weng, Tzu-Hsiang
    MICROPOROUS AND MESOPOROUS MATERIALS, 2008, 113 (1-3) : 499 - 510
  • [28] Carbon molecular sieve/ZSM-5 mixed matrix membranes with enhanced gas separation performance and the performance recovery of the aging membranes
    Zhang, Yongyue
    Sun, Meiyue
    Li, Lin
    Xu, Ruisong
    Pan, Yanqiu
    Wang, Tonghua
    JOURNAL OF MEMBRANE SCIENCE, 2022, 660
  • [29] Development of computer simulation on the mechanism of gas separation through carbon molecular sieve membranes
    Wang, TH
    Li, JG
    Pan, YQ
    Han, W
    Cai, TX
    NEW CARBON MATERIALS, 2002, 17 (04) : 62 - 66
  • [30] Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor
    Ma, Xiaohua
    Swaidan, Raja
    Teng, Baiyang
    Tan, Hua
    Salinas, Octavio
    Litwiller, Eric
    Han, Yu
    Pinnau, Ingo
    CARBON, 2013, 62 : 88 - 96