A Theoretical Study to Predict the Flexural Strength of Singly and Doubly Reinforced Ultra-High Performance Concrete Beams

被引:0
作者
Jabbar A.M. [1 ]
Hasan Q.A. [2 ]
Abdul-Husain Z.A. [2 ]
机构
[1] Civil Engineering Department, College of Engineering, Wasit University
[2] Civil Engineering Department, University of Technology, Baghdad
来源
Journal of Engineering Science and Technology Review | 2022年 / 15卷 / 02期
关键词
Compressive strength; Flexural analysis; Steel fibers; Tensile stress; Uhpc;
D O I
10.25103/jestr.152.13
中图分类号
学科分类号
摘要
Ultra-high performance concrete (UHPC) characterizes by a significant tensile strength that cannot be neglected in structural analysis, besides more than 150 MPa compressive strength, high ductility, durability, and toughness. The available analytical methods for traditional concrete beams disregard the tensile strength and strain-softening behavior in tension and compression; therefore, they are not suitable for analyzing UHPC beams. This paper presents a theoretical study to predict the flexural capacity of UHPC beams based on an analysis method that considers the effect of material properties. Predicting the bending moment in singly and doubly reinforced UHPC beams depends on adopting a simplified tensile and compressive constitutive response of UHPC.The procedure adopts several factors that affect the behavior of UHPC upon loading. Previous factors like volume fraction, shape, length, diameter, and orientation of fibers are considered for estimating the tensile stress and a bending moment of UHPC. In addition, a new factor related to silica fume content is adopted to estimate the bonding force between fibers and the matrix and the tensile stress. Also, the initial tensile strength of UHPC is deemed in the tensile stress equation due to the dual action of fibers on confining the matrix and the bridging effect by transferring the stress upon cracking. The equations are proposed for counting the tensile stress, neutral axis position of the beam section, and bending moment. These equations agree with the experimental results for tensile stress and a bending moment of beams implemented by other researchers. © 2022. School of Science, IHU. All rights reserved.
引用
收藏
页码:91 / 101
页数:10
相关论文
共 50 条
  • [41] Stress-strain models for ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC) under triaxial compression
    Zhang, S. S.
    Wang, J. J.
    Lin, Guan
    Yu, T.
    Fernando, D.
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 370
  • [42] Shear Bond between Ultra-High Performance Fibre Reinforced Concrete Overlays and Normal Strength Concrete Substrates
    Javidmehr, Sara
    Empelmann, Martin
    SUSTAINABILITY, 2021, 13 (15)
  • [43] Tensile behavior of textile reinforced ultra-high performance concrete
    Yao, Yiming
    Sun, Yuanfeng
    Zhai, Mengchao
    Chen, Can
    Lu, Cong
    Wang, Jingquan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [44] Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Beams after Exposure to High Temperatures
    Chen, How-Ji
    Chen, Chien-Chuan
    Lin, Hung-Shan
    Lin, Shu-Ken
    Tang, Chao-Wei
    MATERIALS, 2021, 14 (18)
  • [45] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17
  • [46] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [47] Analysis of Compressive Strength Development of Ultra-high Performance Concrete
    HAN Fangyu
    LIU Jianzhong
    ZHANG Qianqian
    LIU Jiaping
    SHI Liang
    Journal of the Chinese Ceramic Society, 2016, 3 (03) : 145 - 152
  • [48] Triaxial strength and failure criterion of ultra-high performance concrete
    Wu, Pengtao
    Wu, Chengqing
    Liu, Zhongxian
    Xu, Shenchun
    Li, Jun
    Li, Jie
    ADVANCES IN STRUCTURAL ENGINEERING, 2022, 25 (09) : 1893 - 1906
  • [49] Study on the mechanical and rheological properties of ultra-high performance concrete
    Chen, Ying
    Liu, Peng
    Sha, Fei
    Yin, Jian
    He, Sasa
    Li, Qianghui
    Yu, Zhiwu
    Chen, Hailong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 111 - 124
  • [50] Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model: Experiment and theory
    Qi, Jianan
    Wang, Jingquan
    Ma, Zhongguo John
    STRUCTURAL CONCRETE, 2018, 19 (03) : 719 - 734