A Theoretical Study to Predict the Flexural Strength of Singly and Doubly Reinforced Ultra-High Performance Concrete Beams

被引:0
作者
Jabbar A.M. [1 ]
Hasan Q.A. [2 ]
Abdul-Husain Z.A. [2 ]
机构
[1] Civil Engineering Department, College of Engineering, Wasit University
[2] Civil Engineering Department, University of Technology, Baghdad
来源
Journal of Engineering Science and Technology Review | 2022年 / 15卷 / 02期
关键词
Compressive strength; Flexural analysis; Steel fibers; Tensile stress; Uhpc;
D O I
10.25103/jestr.152.13
中图分类号
学科分类号
摘要
Ultra-high performance concrete (UHPC) characterizes by a significant tensile strength that cannot be neglected in structural analysis, besides more than 150 MPa compressive strength, high ductility, durability, and toughness. The available analytical methods for traditional concrete beams disregard the tensile strength and strain-softening behavior in tension and compression; therefore, they are not suitable for analyzing UHPC beams. This paper presents a theoretical study to predict the flexural capacity of UHPC beams based on an analysis method that considers the effect of material properties. Predicting the bending moment in singly and doubly reinforced UHPC beams depends on adopting a simplified tensile and compressive constitutive response of UHPC.The procedure adopts several factors that affect the behavior of UHPC upon loading. Previous factors like volume fraction, shape, length, diameter, and orientation of fibers are considered for estimating the tensile stress and a bending moment of UHPC. In addition, a new factor related to silica fume content is adopted to estimate the bonding force between fibers and the matrix and the tensile stress. Also, the initial tensile strength of UHPC is deemed in the tensile stress equation due to the dual action of fibers on confining the matrix and the bridging effect by transferring the stress upon cracking. The equations are proposed for counting the tensile stress, neutral axis position of the beam section, and bending moment. These equations agree with the experimental results for tensile stress and a bending moment of beams implemented by other researchers. © 2022. School of Science, IHU. All rights reserved.
引用
收藏
页码:91 / 101
页数:10
相关论文
共 50 条
  • [31] Effect of Specimen Geometry on the Compressive Strength of Ultra-High Performance Concrete
    Riedel, Philipp
    Leutbecher, Torsten
    Piotrowski, Siemon
    Heese, Christian
    BETON- UND STAHLBETONBAU, 2018, 113 (08) : 598 - 607
  • [32] An Experimental Evaluation of Direct Tensile Strength for Ultra-high Performance Concrete
    An Hoang Le
    FIBRE REINFORCED CONCRETE: IMPROVEMENTS AND INNOVATIONS II, BEFIB 2021, 2022, 36 : 958 - 964
  • [33] Hybrid fibre reinforced ultra-high performance concrete beams under static and impact loads
    Wei, Jie
    Li, Jun
    Wu, Chengqing
    Liu, Zhong-xian
    Li, Jie
    ENGINEERING STRUCTURES, 2021, 245
  • [34] Analysis of flexural and shear resistance of ultra high performance fiber reinforced concrete beams without stirrups
    Kodur, Venkatesh
    Solhmirzaei, Roya
    Agrawal, Ankit
    Aziz, Esam M.
    Soroushian, Parviz
    ENGINEERING STRUCTURES, 2018, 174 : 873 - 884
  • [35] Shear behaviour of ultra-high performance concrete beams with openings
    Elsayed, Mahmoud
    Badawy, Samah
    Tayeh, Bassam A.
    Elymany, Magdy
    Salem, Mohamed
    ElGawady, Mohamed
    STRUCTURES, 2022, 43 : 546 - 558
  • [36] Flexural strength prediction models of non-prestressed Ultra-High Performance Concrete (UHPC) components
    Kodsy, Antony
    Morcous, George
    STRUCTURES, 2021, 34 : 4532 - 4547
  • [37] FLEXURAL BEHAVIOR OF HIGH-STRENGTH FIBER-REINFORCED CONCRETE BEAMS
    ASHOUR, SA
    WAFA, FF
    ACI STRUCTURAL JOURNAL, 1993, 90 (03) : 279 - 287
  • [38] Calculation method for flexural capacity of high strain-hardening ultra-high performance concrete T-beams
    Liu, Chao
    Zhang, Yuxin
    Yao, Yuan
    Huang, Yuhao
    STRUCTURAL CONCRETE, 2019, 20 (01) : 405 - 419
  • [39] Influence of the fresh ultra-high performance fiber reinforced concrete flowability on its compressive strength
    Yang J.
    Chen B.
    Wu X.
    Su J.
    Huang Q.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2021, 38 (11): : 3827 - 3837
  • [40] Experimental Study on the Flexural Behavior of Lap-Spliced Ultra-High-Performance Fiber-Reinforced Concrete Beams
    Bae, Baek-Il
    Choi, Hyun-Ki
    POLYMERS, 2022, 14 (11)