Acoustic emission signature of martensitic transformation in laser powder bed fusion of Ti6Al4V-Fe, supported by operando X-ray diffraction

被引:0
|
作者
Esmaeilzadeh, Reza [1 ]
Pandiyan, Vigneashwara [2 ,3 ]
Van Petegem, Steven [4 ]
van der Meer, Mathijs [1 ]
Nasab, Milad Hamidi [1 ]
de Formanoir, Charlotte [1 ]
Jhabvala, Jamasp [1 ]
Navarre, Claire [1 ]
Schlenger, Lucas [1 ]
Richter, Roland [2 ]
Casati, Nicola [5 ]
Wasmer, Kilian [2 ]
Loge, Roland E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, PX Grp Chair, Thermomechan Met Lab, CH-2002 Neuchatel, Switzerland
[2] Empa Swiss Fed Labs Mat Sci & Technol, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
[3] Technol Innovat Inst TII, Adv Mat Res Ctr, Addit Mfg Grp, POB 6263, Masdar City, Abu Dhabi, U Arab Emirates
[4] Paul Scherrer Inst, PSI Ctr Photon Sci, Struct & Mech Adv Mat, Forschungsstr 111, CH-5232 Villigen, Switzerland
[5] Paul Scherrer Inst, Swiss Light Source, Forschungsstr 111, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会;
关键词
Laser Powder Bed Fusion; Acoustic Emission Monitoring; Machine Learning; Operando X-ray Diffraction; Ti6Al4V-Fe alloy; Martensite; TITANIUM-ALLOY; MICROSTRUCTURE; TI-6AL-4V;
D O I
10.1016/j.addma.2024.104562
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study focuses on investigating Acoustic Emission (AE) monitoring in the Laser Powder Bed Fusion (LPBF) process, using premixed Ti6Al4V-(x wt%) Fe, where x = 0, 3, and 6. By employing a structure-borne AE sensor, we analyze AE data statistically, uncovering notable discrepancies within the 50-750 kHz frequency range. Leveraging Machine Learning (ML) methodologies, we accurately predict composition for particular processing conditions. These fluctuations in AE signals primarily arise from unique microstructural alterations linked to martensitic phase transformation, corroborated by operando synchrotron X-ray diffraction and post-mortem SEM and EBSD analysis. Moreover, cracks are evident at the periphery of the printed parts, stemming from local inadequate heat input during the blending of Ti6Al4V with added Fe powder. These cracks are discerned via AE signals subsequent to the cessation of the laser beam, correlating with the presence of brittle intermetallics at their junction. This study highlights for the first time the potential of AE monitoring in reliably detecting footprints of martensitic transformations during the LPBF process. Additionally, AE is shown to prove valuable for assessing crack formations, particularly in scenarios involving premixed powders and necessitating precise selection of processing parameters, notably at part edges.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Mechanical properties of Ti-6Al-4V thin walls fabricated by laser powder bed fusion
    Lee, Junghoon
    Hussain, Arif
    Ha, Jeonghong
    Kwon, Youngsam
    Kim, Rae Eon
    Kim, Hyoung Seop
    Kim, Dongsik
    ADDITIVE MANUFACTURING, 2024, 94
  • [32] Investigation of fatigue behavior of laser powder bed fusion Ti-6Al-4V: Roles of heat treatment and microstructure
    Liu, Jianwen
    Zhang, Kai
    Liu, Jie
    Wang, Hao
    Yang, Yi
    Yan, Liangming
    Tian, Xinni
    Zhu, Yuman
    Huang, Aijun
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 176
  • [33] Powder contamination during laser powder bed fusion: Inconel 718 in Ti6Al4V
    Groden, Cory
    Traxel, Kellen D.
    Bandyopadhyay, Amit
    MATERIALS LETTERS, 2024, 365
  • [34] On the viability of in-situ alloyed Ti-1Fe as a strong and ductile alternative to Ti-6Al-4V for laser-based powder bed fusion
    Huang, Jeff
    Issariyapat, Ammarueda
    Kariya, Shota
    Umeda, Junko
    Kondoh, Katsuyoshi
    ADDITIVE MANUFACTURING, 2025, 105
  • [35] Exploring the feasibility of preparing Ti/Ti6Al4V composites by laser powder bed fusion
    Shen, J.
    Pan, Z.
    Nadimpalli, V. K.
    Yu, T.
    44TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE, RISO 2024, 2024, 1310
  • [36] Mechanisms on inter-track void formation and phase transformation during laser Powder Bed Fusion of Ti-6Al-4V
    Wei, H. L.
    Cao, Y.
    Liao, W. H.
    Liu, T. T.
    ADDITIVE MANUFACTURING, 2020, 34
  • [37] Transformation-mediated in-situ β recrystallization in laser powder-bed fusion additively manufactured Ti-6Al-4V
    Chen, J.
    Fabijanic, D.
    Brandt, M.
    Xu, W.
    MATERIALS CHARACTERIZATION, 2023, 206
  • [38] Microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V after HIP treatments with varied temperatures and cooling rates
    Derimow, Nicholas
    Benzing, Jake T.
    Joress, Howie
    McDannald, Austin
    Lu, Ping
    DelRio, Frank W.
    Moser, Newell
    Connolly, Matthew J.
    Saville, Alec I.
    Kafka, Orion L.
    Beamer, Chad
    Fishel, Ryan
    Sarker, Suchismita
    Hadley, Chris
    Hrabe, Nik
    MATERIALS & DESIGN, 2024, 247
  • [39] Optimisation of the laser polishing for laser-powder bed fusion and electron beam-powder bed fusion Ti6Al4V surfaces
    El Hassanin, Andrea
    Manco, Emanuele
    Squillace, Antonino
    Obeidi, Muhannad Ahmed
    SURFACE & COATINGS TECHNOLOGY, 2024, 485
  • [40] Grain boundary α-phase precipitation and coarsening: Comparing laser powder bed fusion with as-cast Ti-6Al-4V
    Liu, Jianwen
    Zhang, Kai
    Yang, Yi
    Wang, Hao
    Zhu, Yuman
    Huang, Aijun
    SCRIPTA MATERIALIA, 2022, 207