Depth-Visual-Inertial (DVI) Mapping System for Robust Indoor 3D Reconstruction

被引:0
作者
Hamesse, Charles [1 ,2 ]
Vlaminck, Michiel [2 ]
Luong, Hiep [2 ]
Haelterman, Rob [1 ]
机构
[1] Royal Mil Acad, Dept Math, B-1000 Brussels, Belgium
[2] Univ Ghent, IMEC IPI URC, B-9000 Ghent, Belgium
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2024年 / 9卷 / 12期
关键词
Mapping; localization; RGB-D perception; search and rescue robots; REAL-TIME; LIDAR; ODOMETRY; LIO;
D O I
10.1109/LRA.2024.3487496
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose the Depth-Visual-Inertial (DVI) mapping system: a robust multi-sensor fusion framework for dense 3D mapping using time-of-flight cameras equipped with RGB and IMU sensors. Inspired by recent developments in real-time LiDAR-based odometry and mapping, our system uses an error-state iterative Kalman filter for state estimation: it processes the inertial sensor's data for state propagation, followed by a state update first using visual-inertial odometry, then depth-based odometry. This sensor fusion scheme makes our system robust to degenerate scenarios (e.g. lack of visual or geometrical features, fast rotations) and to noisy sensor data, like those that can be obtained with off-the-shelf time-of-flight DVI sensors. For evaluation, we propose the new Bunker DVI Dataset, featuring data from multiple DVI sensors recorded in challenging conditions reflecting search-and-rescue operations. We show the superior robustness and precision of our method against previous work. Following the open science principle, we make both our source code and dataset publicly available.
引用
收藏
页码:11313 / 11320
页数:8
相关论文
共 50 条
  • [31] A 3D indoor positioning system based on common visible LEDs
    Cossu, G.
    Ciaramella, E.
    PHYSICAL COMMUNICATION, 2022, 54
  • [32] Dot-coded structured light for accurate and robust 3D reconstruction
    Gu, Feifei
    Cao, Huazhao
    Song, Zhan
    Xie, Pengju
    Zhao, Juan
    Liu, Jing
    APPLIED OPTICS, 2020, 59 (33) : 10574 - 10583
  • [33] Accurate and Robust Object SLAM With 3D Quadric Landmark Reconstruction in Outdoors
    Tian, Rui
    Zhang, Yunzhou
    Feng, Yonghui
    Yang, Linghao
    Cao, Zhenzhong
    Coleman, Sonya
    Kerr, Dermot
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 1534 - 1541
  • [34] SoSEdata3D A process for mapping System of Systems data in 3d
    Nolan, Anthony
    2014 WORLD AUTOMATION CONGRESS (WAC): EMERGING TECHNOLOGIES FOR A NEW PARADIGM IN SYSTEM OF SYSTEMS ENGINEERING, 2014,
  • [35] A 3D LiDAR-Inertial Tightly-Coupled SLAM for Mobile Robots on Indoor Environment
    Li, Sen
    He, Rui
    Guan, He
    Shen, Yuanrui
    Ma, Xiaofei
    Liu, Hezhao
    IEEE ACCESS, 2024, 12 : 29596 - 29606
  • [36] Grid Map Guided Indoor 3D Reconstruction for Mobile Robots with RGB-D Sensors
    Zhang, Boyu
    Zhang, Xuebo
    Chen, Xiang
    Fang, Yongchun
    2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2018, : 498 - 503
  • [37] INDOOR 3D SCANNING AND NAVIGATION SYSTEM FOR AN AUTOMATED GUIDED VEHICLE
    Grigorescu, Sorin-Dan
    Seritan, George-Calin
    Enache, Bogdan-Adrian
    Argatu, Florin-Ciprian
    Adochiei, Felilx-Constantin
    Stanciu, Victor
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2023, 68 (02): : 232 - 235
  • [38] A Fast Scanning System for Automatic 3D Object Reconstruction
    Severino, Umberto
    Fuoco, Fabrizio
    Manfredi, Felix
    Barbieri, Loris
    Muzzupappa, Maurizio
    DESIGN TOOLS AND METHODS IN INDUSTRIAL ENGINEERING II, ADM 2021, 2022, : 229 - 236
  • [39] Online 3D Mapping and Localization System for Agricultural Robots
    Le, Tuan
    Gjevestad, Jon Glenn Omholt
    From, Pal Johan
    IFAC PAPERSONLINE, 2019, 52 (30): : 167 - 172
  • [40] 3D Room Geometry Reconstruction Using Audio-Visual Sensors
    Kim, Hansung
    Remaggi, Luca
    Jackson, Philip J. B.
    Fazi, Filippo Maria
    Hilton, Adrian
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 621 - 629