Depth-Visual-Inertial (DVI) Mapping System for Robust Indoor 3D Reconstruction

被引:0
|
作者
Hamesse, Charles [1 ,2 ]
Vlaminck, Michiel [2 ]
Luong, Hiep [2 ]
Haelterman, Rob [1 ]
机构
[1] Royal Mil Acad, Dept Math, B-1000 Brussels, Belgium
[2] Univ Ghent, IMEC IPI URC, B-9000 Ghent, Belgium
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2024年 / 9卷 / 12期
关键词
Mapping; localization; RGB-D perception; search and rescue robots; REAL-TIME; LIDAR; ODOMETRY; LIO;
D O I
10.1109/LRA.2024.3487496
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose the Depth-Visual-Inertial (DVI) mapping system: a robust multi-sensor fusion framework for dense 3D mapping using time-of-flight cameras equipped with RGB and IMU sensors. Inspired by recent developments in real-time LiDAR-based odometry and mapping, our system uses an error-state iterative Kalman filter for state estimation: it processes the inertial sensor's data for state propagation, followed by a state update first using visual-inertial odometry, then depth-based odometry. This sensor fusion scheme makes our system robust to degenerate scenarios (e.g. lack of visual or geometrical features, fast rotations) and to noisy sensor data, like those that can be obtained with off-the-shelf time-of-flight DVI sensors. For evaluation, we propose the new Bunker DVI Dataset, featuring data from multiple DVI sensors recorded in challenging conditions reflecting search-and-rescue operations. We show the superior robustness and precision of our method against previous work. Following the open science principle, we make both our source code and dataset publicly available.
引用
收藏
页码:11313 / 11320
页数:8
相关论文
共 50 条
  • [1] 3D Indoor Mapping and BIM Reconstruction Editorial
    Bassier, Maarten
    Poux, Florent
    Nikoohemat, Shayan
    REMOTE SENSING, 2023, 15 (07)
  • [2] D3VIL-SLAM: 3D Visual Inertial LiDAR SLAM for Outdoor Environments
    Frosi, Matteo
    Matteucci, Matteo
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [3] Low Cost 3D Mapping for Indoor Navigation
    Bergeon, Yves
    Hadda, Imed
    Krivanek, Vaclav
    Motsch, Jean
    Stefek, Alexandr
    INTERNATIONAL CONFERENCE ON MILITARY TECHNOLOGIES (ICMT 2015), 2015, : 689 - 693
  • [4] A robust and precise 3D indoor positioning system for harsh environments
    Blankenbach, Joerg
    Norrdine, Abdelmoumen
    Hellmers, Hendrik
    2012 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2012,
  • [5] RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments
    Henry, Peter
    Krainin, Michael
    Herbst, Evan
    Ren, Xiaofeng
    Fox, Dieter
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (05): : 647 - 663
  • [6] Large-Scale Cooperative 3D Visual-Inertial Mapping in a Manhattan World
    Guo, Chao X.
    Sartipi, Kourosh
    DuToit, Ryan C.
    Georgiou, Georgios A.
    Li, Ruipeng
    O'Leary, John
    Nerurkar, Esha D.
    Hesch, Joel A.
    Roumeliotis, Stergios I.
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1071 - 1078
  • [7] A Review of Techniques for 3D Reconstruction of Indoor Environments
    Kang, Zhizhong
    Yang, Juntao
    Yang, Zhou
    Cheng, Sai
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (05)
  • [8] On Detailed 3D Reconstruction of Large Indoor Environments
    Bondarev, Egor
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XIII, 2015, 9399
  • [9] Robust Radar Inertial Odometry in Dynamic 3D Environments
    Lyu, Yang
    Hua, Lin
    Wu, Jiaming
    Liang, Xinkai
    Zhao, Chunhui
    DRONES, 2024, 8 (05)
  • [10] 3D Reconstruction of Indoor Scenes via Image Registration
    Li, Ce
    Lu, Bing
    Zhang, Yachao
    Liu, Hao
    Qu, Yanyun
    NEURAL PROCESSING LETTERS, 2018, 48 (03) : 1281 - 1304