Advanced thermal performance of blood-integrated tri-hybrid nanofluid: an artificial neural network-based modeling and simulation

被引:0
|
作者
Hussain, Mohib [1 ,2 ]
Lin, Du [1 ,2 ]
Waqas, Hassan [3 ]
Jiang, Feng [2 ,4 ]
Muhammad, Taseer [5 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, MIIT Key Lab Dynam & Control Complex Syst, Xian 710072, Peoples R China
[3] Wuhan Univ Technol, Sch Naval Architecture Ocean & Energy Power Engn, Wuhan 430063, Hubei, Peoples R China
[4] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China
[5] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
Blood-integrated nanofluid; Squeezing flow; Artificial neural network; Advanced drug delivery; Numerical simulation; IN-VITRO; FLOW; NANOPARTICLES; CONDUCTIVITY; PREDICTION; CARRIER; VIVO;
D O I
10.1007/s11043-024-09748-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerical simulation in conjunction with artificial neural networks (ANN) has shown to be an advanced method for simulating and modeling intricate fluid dynamics problems. However, to guarantee that the model can precisely forecast transport phenomena, ANN modeling is necessary yet difficult. This study examines the symmetry of blood-based MHD squeezing nanofluid (Au similar to Blood)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(Au \sim Blood)$\end{document}, bi-hybrid (Au+Fe3O4 similar to Blood)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(Au + Fe_{3}O_{4} \sim Blood)$\end{document}, and tri-hybrid nanofluid (Au+Fe3O4+MWCNTs similar to Blood)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(Au + Fe_{3}O_{4} + MWCNTs \sim Blood)$\end{document} flow between parallel plates using a comprehensive numerical simulation and artificial neural network (ANN) analysis. The heat transfer mechanism is investigated employing the heat source/sink, thermal radiation, suction/injection, the magnetic field, and porous media. The governing partial differential equations are solved numerically with an improved finite difference approach the Keller-box technique after being modified by similarity transformations. In order to effectively predict fluid flow characteristics, this study proposes a novel approach that combines a multilayer ANN with the Levenberg-Marquardt algorithm (LMA). A strong magnetic field reduces fluid flow at the contact due to Lorentz effects, resulting in lower radial velocity as M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M$\end{document} increases. In comparison to injection, the rising values of the suction parameter raise the temperature by giving the velocity of the fluid layer and eliminating isolated boundary layers. Increased permeability at the bottom plate results in higher flow resistance and reduced velocity profiles toward the upper plate. The proposed ANN approach provides fast convergence and reduced processing costs without the need for linearization. This research offers valuable insights into the performance gains made possible by tri-hybrid nanofluids, such as increased thermal conductivity, paving the way for advancements in biological applications like cancer treatment, blood pumping, and targeted drug delivery.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Advanced neural network modeling with Levenberg-Marquardt algorithm for optimizing tri-hybrid nanofluid dynamics in solar HVAC systems
    Aziz, A.
    Shah, S. A. H.
    Bahaidarah, H. M. S.
    Zamir, T.
    Aziz, T.
    CASE STUDIES IN THERMAL ENGINEERING, 2025, 65
  • [2] Neural Network-Based Thermal Simulation of Integrated Circuits on GPUs
    Sridhar, Arvind
    Vincenzi, Alessandro
    Ruggiero, Martino
    Atienza, David
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2012, 31 (01) : 23 - 36
  • [3] Artificial Neural Network-Based Compact Modeling Methodology for Advanced Transistors
    Wang, Jing
    Kim, Yo-Han
    Ryu, Jisu
    Jeong, Changwook
    Choi, Woosung
    Kim, Daesin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (03) : 1318 - 1325
  • [4] Artificial neural network-based dynamic modeling of thermal systems and their control
    Yang, KT
    Sen, M
    HEAT TRANSFER SCIENCE AND TECHNOLOGY 2000, 2000, : 10 - 26
  • [5] Neural Network Modeling of CuO/Au Hybrid Nanofluid Thermal Performance with Slip Effects for Advanced Process Applications
    Kotike, Jyothi
    Beedalannagari, Omprakash
    Rekapalli, Leelavathi
    Usman, Muhammad
    Kadavakollu, Kalyani Radha
    PROCESSES, 2025, 13 (02)
  • [6] Artificial neural network-based performance assessments
    Stevens, R
    Ikeda, J
    Casillas, A
    Palacio-Cayetano, J
    Clyman, S
    COMPUTERS IN HUMAN BEHAVIOR, 1999, 15 (3-4) : 295 - 313
  • [7] Artificial neural network-based performance assessments
    Stevens, R.
    Ikeda, J.
    Casillas, A.
    Palacio-Cayetano, J.
    Clyman, S.
    Computers in Human Behavior, 1999, 15 (03): : 295 - 313
  • [8] Artificial neural network-based modeling of flashlamp characteristics
    Mairaj, Aakif
    Ansari, M. S.
    Singh, Manoranjan P.
    ELECTRICAL ENGINEERING, 2023, 105 (01) : 531 - 550
  • [9] Artificial neural network-based modeling of flashlamp characteristics
    Aakif Mairaj
    M. S. Ansari
    Manoranjan P. Singh
    Electrical Engineering, 2023, 105 : 531 - 550
  • [10] MHD tri-hybrid nanofluid blood flow in a porous cylinder: Insights from fractional relaxation modeling with thermal radiation and slip velocity boundary condition
    Omama, Mohamed
    Arafa, Ayman A.
    Elsaid, Ahmed
    Zahra, Waheed K.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (01):