Tailoring Multifunctional Amine Salts Based on Anisole Liquid Soaking for Fabricating Efficient and Stable Perovskite Solar Cells

被引:0
|
作者
Zheng, Wenwen [1 ]
Xia, Tian [1 ]
Zhang, Xueqi [1 ]
Han, Junzhe [1 ]
Li, Yingying [1 ]
Tian, Nan [1 ,2 ]
Zheng, Guoyuan [1 ,2 ]
Wang, Jilin [1 ,2 ]
Peng, Yong [3 ]
Yao, Disheng [1 ,2 ]
Long, Fei [1 ,2 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Guangxi Key Lab Opt & Elect Mat & Devices, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ, Sch Mat Sci & Engn, Key Lab New Proc Technol Nonferrous Met & Mat, Minist Educ,Collaborat Innovat Ctr Explorat Nonfer, Guilin 541004, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cells; anisole liquid soaking; passivation; post-treatments to perovskite film; organic amine salt; HALIDE PEROVSKITES; PASSIVATION;
D O I
10.1021/acsami.4c12455
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The post-treatment based on spin-coating (SC) organic amine salts is commonly used for surface modification of perovskite films to eliminate defects. However, there is still a lack of systematic study and a unified understanding of the functions and mechanisms of different organic amine salts. The SC method is also not conducive to the industrialization of solar cells. In this work, we study three different organic amine salts, and a passivation strategy for perovskite films based on green anisole liquid soaking (ALS) has been developed. Phenylethylammonium iodide (PEAI), diethylamine hydroiodide (DEAI), and guanidine hydroiodide (GAI) organic amine salt passivators are selected to modify perovskite films, and their effect and working mechanism are also systematically estimated. It is found that PEAI passivates shallow-level defects on the surface of perovskite films, while DEAI incorporates into the perovskite lattice to suppress point defects, and GAI eliminates excess PbI2 residuals in perovskite films. These three organic-amine-salt-modified devices achieve enhanced power conversion efficiencies (PCE) of 21.82% (PEAI-ALS), 21.74% (DEAI-ALS), and 22.21% (GAI-ALS), which is much higher than that of the pristine device without treatment (19.95%). The PCE of the PEAI-ALS device retains nearly 94% of the initial efficiency after 1200 h in unpackaged conditions and about 40% ambient humidity, achieving the best stability performance. Particularly, the PEAI-ALS device has the best comprehensive performance in efficiency and stability. And PEAI is estimated by the SC method and ALS method, and it is found that the PEAI-ALS device achieves a higher PCE compared to the PEAI-SC device (21.51%). We believe that the post-treatment based on a combination of appropriate amine salts and ALS enables a universal approach for fabrication of perovskite solar cells with enhanced photovoltaic performance.
引用
收藏
页码:66643 / 66654
页数:12
相关论文
共 50 条
  • [1] Efficient and Stable Perovskite Solar Cells by Tailoring of Interfaces
    Xia, Jianxing
    Sohail, Muhammad
    Nazeeruddin, Mohammad Khaja
    ADVANCED MATERIALS, 2023, 35 (31)
  • [2] Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells
    Cai, Yuan
    Cui, Jian
    Chen, Ming
    Zhang, Miaomiao
    Han, Yu
    Qian, Fang
    Zhao, Huan
    Yang, Shaomin
    Yang, Zhou
    Bian, Hongtao
    Wang, Tao
    Guo, Kunpeng
    Cai, Molang
    Dai, Songyuan
    Liu, Zhike
    Liu, Shengzhong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (07)
  • [3] Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells
    Zhuang, Qixin
    Zhang, Cong
    Gong, Cheng
    Li, Haiyun
    Li, Hongxiang
    Zhang, Zhongying
    Yang, Hua
    Chen, Jiangzhao
    Zang, Zhigang
    NANO ENERGY, 2022, 102
  • [4] Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells
    Li, Bowei
    Xiang, Yuren
    Jayawardena, K. D. G. Imalka
    Luo, Deying
    Watts, John F.
    Hinder, Steven
    Li, Hui
    Ferguson, Victoria
    Luo, Haitian
    Zhu, Rui
    Silva, S. Ravi P.
    Zhang, Wei
    SOLAR RRL, 2020, 4 (05)
  • [5] Multifunctional Cross-Linked Hole Transporting Interfacial Layer for Efficient and Stable Perovskite Solar Cells
    Yu, Hang
    Li, Dewang
    Bao, Huayu
    Zhang, Zhenhu
    Liu, Hongli
    Zhang, Fei
    Wang, Shirong
    ACS APPLIED ENERGY MATERIALS, 2022, : 10742 - 10750
  • [6] Multifunctional Dapsone Additives Prepare Efficient and Stable Perovskite Solar Cells
    Hou, Xian
    Yuan, Zhenjia
    Liu, Jinlong
    Ma, Hongzhen
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9328 - 9336
  • [7] A Multifunctional Polymer as an Interfacial Layer for Efficient and Stable Perovskite Solar Cells
    Zhang, Bingqian
    Chen, Chen
    Wang, Xianzhao
    Du, Xiaofan
    Liu, Dachang
    Sun, Xiuhong
    Li, Zhipeng
    Hao, Lianzheng
    Gao, Caiyun
    Li, Yimeng
    Shao, Zhipeng
    Wang, Xiao
    Cui, Guanglei
    Pang, Shuping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (02)
  • [8] Multifunctional Conjugated Ligand Engineering for Stable and Efficient Perovskite Solar Cells
    Ma, Ke
    Atapattu, Harindi R.
    Zhao, Qiuchen
    Gao, Yao
    Finkenauer, Blake P.
    Wang, Kang
    Chen, Ke
    Park, So Min
    Coffey, Aidan H.
    Zhu, Chenhui
    Huang, Libai
    Graham, Kenneth R.
    Mei, Jianguo
    Dou, Letian
    ADVANCED MATERIALS, 2021, 33 (32)
  • [9] A pressure process for efficient and stable perovskite solar cells
    Luo, Junsheng
    Xia, Jianxing
    Yang, Hua
    Sun, Chunlin
    Li, Ning
    Malik, Haseeb Ashraf
    Shu, Hongyu
    Wan, Zhongquan
    Zhang, Haoli
    Brabec, Christoph J.
    Jia, Chunyang
    NANO ENERGY, 2020, 77
  • [10] Perovskite Passivation Strategies for Efficient and Stable Solar Cells
    Li, Cong
    Li, Huan
    Zhu, Zhinan
    Cui, Nuanyang
    Tan, Zhan'ao
    Yang, Rusen
    SOLAR RRL, 2021, 5 (01)