Vision transformers in domain adaptation and domain generalization: a study of robustness

被引:0
|
作者
Alijani, Shadi [1 ]
Fayyad, Jamil [1 ]
Najjaran, Homayoun [1 ]
机构
[1] University of Victoria, 800 Finnerty Road, Victoria, V8P 5C2, BC
基金
加拿大自然科学与工程研究理事会;
关键词
Distribution shifts; Domain adaptation; Domain generalization; Vision transformers;
D O I
10.1007/s00521-024-10353-5
中图分类号
学科分类号
摘要
Deep learning models are often evaluated in scenarios where the data distribution is different from those used in the training and validation phases. The discrepancy presents a challenge for accurately predicting the performance of models once deployed on the target distribution. Domain adaptation and generalization are widely recognized as effective strategies for addressing such shifts, thereby ensuring reliable performance. The recent promising results in applying vision transformers in computer vision tasks, coupled with advancements in self-attention mechanisms, have demonstrated their significant potential for robustness and generalization in handling distribution shifts. Motivated by the increased interest from the research community, our paper investigates the deployment of vision transformers in domain adaptation and domain generalization scenarios. For domain adaptation methods, we categorize research into feature-level, instance-level, model-level adaptations, and hybrid approaches, along with other categorizations with respect to diverse strategies for enhancing domain adaptation. Similarly, for domain generalization, we categorize research into multi-domain learning, meta-learning, regularization techniques, and data augmentation strategies. We further classify diverse strategies in research, underscoring the various approaches researchers have taken to address distribution shifts by integrating vision transformers. The inclusion of comprehensive tables summarizing these categories is a distinct feature of our work, offering valuable insights for researchers. These findings highlight the versatility of vision transformers in managing distribution shifts, crucial for real-world applications, especially in critical safety and decision-making scenarios. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
引用
收藏
页码:17979 / 18007
页数:28
相关论文
共 50 条
  • [1] Domain Generalization with Interpolation Robustness
    Palakkadavath, Ragja
    Thanh Nguyen-Tang
    Le, Hung
    Venkatesh, Svetha
    Gupta, Sunil
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [2] A Broad Study of Pre-training for Domain Generalization and Adaptation
    Kim, Donghyun
    Wang, Kaihong
    Sclaroff, Stan
    Saenko, Kate
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 621 - 638
  • [3] Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization
    Ghifary, Muhammad
    Balduzzi, David
    Kleijn, W. Bastiaan
    Zhang, Mengjie
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (07) : 1414 - 1430
  • [4] GENERALIZATION BOUNDS FOR DOMAIN ADAPTATION VIA DOMAIN TRANSFORMATIONS
    Vural, Elif
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [5] On the Importance of Attention and Augmentations for Hypothesis Transfer in Domain Adaptation and Generalization
    Thomas, Georgi
    Sahay, Rajat
    Jahan, Chowdhury Sadman
    Manjrekar, Mihir
    Popp, Dan
    Savakis, Andreas
    SENSORS, 2023, 23 (20)
  • [6] Open-world Domain Adaptation and Generalization
    Zhao, Sicheng
    Tao, Jianhua
    Ding, Guiguang
    PROCEEDINGS OF THE ACM TURING AWARD CELEBRATION CONFERENCE-CHINA 2024, ACM-TURC 2024, 2024, : 201 - 202
  • [7] Adversarial and Random Transformations for Robust Domain Adaptation and Generalization
    Xiao, Liang
    Xu, Jiaolong
    Zhao, Dawei
    Shang, Erke
    Zhu, Qi
    Dai, Bin
    SENSORS, 2023, 23 (11)
  • [8] Correlation-aware adversarial domain adaptation and generalization
    Rahman, Mohammad Mahfujur
    Fookes, Clinton
    Baktashmotlagh, Mahsa
    Sridharan, Sridha
    PATTERN RECOGNITION, 2020, 100
  • [9] Partially-Labeled Domain Generalization via Multi-Dimensional Domain Adaptation
    Ye, Feiyang
    Bao, Jianghan
    Zhang, Yu
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [10] Unifying Domain Adaptation and Domain Generalization for Robust Prediction Across Minority Racial Groups
    Khoshnevisan, Farzaneh
    Chi, Min
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 521 - 537