Goji Disease and Pest Monitoring Model Based on Unmanned Aerial Vehicle Hyperspectral Images

被引:2
作者
Zhao, Ruixin [1 ,2 ,3 ]
Zhang, Biyun [4 ]
Zhang, Chunmin [1 ,2 ,3 ]
Chen, Zeyu [1 ,2 ,3 ,5 ]
Chang, Ning [1 ,2 ,3 ,5 ]
Zhou, Baoyu [6 ]
Ke, Ke [1 ,2 ,3 ]
Tang, Feng [1 ,2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Dept Mat Phys, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Inst Space Opt, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Key Lab Nonequilibrium Synth & Modulat Condensed M, Minist Educ, Xian 710049, Peoples R China
[4] BA Trading Guangzhou Co Ltd, Guangzhou 510000, Peoples R China
[5] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
[6] Ningxia Bing He Technol Co Ltd, Shizuishan 753099, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
hyperspectral; diseases and pests; unmanned aerial vehicle (UAV); remote sensing monitoring; VEGETATION INDEXES; PREDICTION;
D O I
10.3390/s24206739
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Combining near-earth remote sensing spectral imaging technology with unmanned aerial vehicle (UAV) remote sensing sensing technology, we measured the Ningqi No. 10 goji variety under conditions of health, infestation by psyllids, and infestation by gall mites in Shizuishan City, Ningxia Hui Autonomous Region. The results indicate that the red and near-infrared spectral bands are particularly sensitive for detecting pest and disease conditions in goji. Using UAV-measured data, a remote sensing monitoring model for goji pest and disease was developed and validated using near-earth remote sensing hyperspectral data. A fully connected neural network achieved an accuracy of over 96.82% in classifying gall mite infestations, thereby enhancing the precision of pest and disease monitoring in goji. This demonstrates the reliability of UAV remote sensing. The pest and disease remote sensing monitoring model was used to visually present predictive results on hyperspectral images of goji, achieving data visualization.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes [J].
Zhang, Hao ;
Zhang, Li ;
Wu, Hongqi ;
Wang, Dejun ;
Ma, Xin ;
Shao, Yuqing ;
Jiang, Mingjun ;
Chen, Xinyu .
AGRICULTURE-BASEL, 2025, 15 (03)
[22]   Diagnostic study of nitrogen nutrition in cotton based on unmanned aerial vehicle RGB images [J].
Wang, Lu ;
Yao, Qiushuang ;
Zhang, Ze ;
Qin, Shizhe ;
Wang, Hongyu ;
Xu, Feng ;
Yang, Mi ;
Lv, Xin ;
Ma, Lulu .
NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2024, 52 (02)
[23]   Multielement Classification of a Small Fragmented Planting Farm Using Hyperspectral Unmanned Aerial Vehicle Image [J].
Xie, Yong ;
Peng, Feiyu ;
Tao, Zui ;
Shao, Wen ;
Dai, Qiancheng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[24]   Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices [J].
Deng, Jie ;
Wang, Rui ;
Yang, Lujia ;
Lv, Xuan ;
Yang, Ziqian ;
Zhang, Kai ;
Zhou, Congying ;
Li, Pengju ;
Wang, Zhifang ;
Abdullah, Ahsan ;
Ma, Zhanhong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[25]   Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales [J].
Zhu, Wanxue ;
Sun, Zhigang ;
Yang, Ting ;
Li, Jing ;
Peng, Jinbang ;
Zhu, Kangying ;
Li, Shiji ;
Gong, Huarui ;
Lyu, Yun ;
Li, Binbin ;
Liao, Xiaohan .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 178 (178)
[26]   UNMANNED AERIAL VEHICLE SURVEYING FOR MONITORING ROAD CONSTRUCTION EARTHWORKS [J].
Julge, Kalev ;
Ellmann, Artu ;
Kook, Romet .
BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING, 2019, 14 (01) :1-17
[27]   Nitrogen Monitoring of Winter Wheat Based on Unmanned Aerial Vehicle Remote Sensing Image [J].
Liu C. ;
Wang Z. ;
Chen Z. ;
Zhou L. ;
Yue X. ;
Miao Y. .
Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2018, 49 (06) :207-214
[28]   Application Method of Unmanned Aerial Vehicle for Crop Monitoring in Korea [J].
Na, Sang-il ;
Park, Chan-won ;
So, Kyu-ho ;
Ahn, Ho-yong ;
Lee, Kyung-do .
KOREAN JOURNAL OF REMOTE SENSING, 2018, 34 (05) :829-846
[29]   Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle [J].
Hruska, Ryan ;
Mitchell, Jessica ;
Anderson, Matthew ;
Glenn, Nancy F. .
REMOTE SENSING, 2012, 4 (09) :2736-2752
[30]   Unmanned Aerial Vehicle-Based Hyperspectral Imaging and Soil Texture Mapping with Robust AI Algorithms [J].
Pena, Pablo Flores ;
Isaac, Mohammad Sadeq Ale ;
Gifu, Daniela ;
Pechlivani, Eleftheria Maria ;
Ragab, Ahmed Refaat .
DRONES, 2025, 9 (02)