Multi-mode dynamic residual graph convolution network for traffic flow prediction

被引:0
|
作者
Huang, Xiaohui [1 ]
Ye, Yuming [1 ]
Ding, Weihua [1 ]
Yang, Xiaofei [2 ]
Xiong, Liyan [1 ]
机构
[1] Department of Information Engineering, East China Jiaotong University, Jiangxi, China
[2] Faculty of Science and Technology, University of Macau, Macau, China
基金
中国国家自然科学基金;
关键词
Dynamic graph - Graph convolution network - Mode dynamics - Multi-mode fusion - Multimodes - Spatio-temporal data - Traffic flow - Traffic flow prediction - Urban development - Urban traffic congestion;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:548 / 564
相关论文
共 50 条
  • [41] Multi-weighted graph 3D convolution network for traffic prediction
    Liu, Yuqing
    Wang, Chen
    Xu, Sixuan
    Zhou, Wei
    Chen, Yuzhi
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 15221 - 15237
  • [42] Multi-weighted graph 3D convolution network for traffic prediction
    Yuqing Liu
    Chen Wang
    Sixuan Xu
    Wei Zhou
    Yuzhi Chen
    Neural Computing and Applications, 2023, 35 : 15221 - 15237
  • [43] Short-term Traffic Flow Prediction With Residual Graph Attention Network
    Zhang, Xijun
    Yu, Guangjie
    Shang, Jiyang
    Zhang, Baoqi
    ENGINEERING LETTERS, 2022, 30 (04) : 1230 - 1236
  • [44] Spatiotemporal interactive dynamic adaptive adversarial graph convolution network for traffic flow forecasting
    Zhang, Hong
    Chen, Linbiao
    Cao, Jie
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2024, 12 (01)
  • [45] Interactive dynamic diffusion graph convolutional network for traffic flow prediction
    Zhang, Shuai
    Yu, Wangzhi
    Zhang, Wenyu
    INFORMATION SCIENCES, 2024, 677
  • [46] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348
  • [47] Optimized Graph Convolution Recurrent Neural Network for Traffic Prediction
    Guo, Kan
    Hu, Yongli
    Qian, Zhen
    Liu, Hao
    Zhang, Ke
    Sun, Yanfeng
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (02) : 1138 - 1149
  • [48] Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Li, Kuan-Ching
    Zomaya, Albert Y.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 323 - 332
  • [49] Dynamic Spatio-temporal traffic flow prediction based on multi fusion graph attention network
    Cheng, Manru
    Jiang, Guo-Ping
    Song, Yurong
    Yang, Chen
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7285 - 7291
  • [50] Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction
    Gao, Ming
    Du, Zhuoran
    Qin, Hongmao
    Wang, Wei
    Jin, Guangyin
    Xie, Guotao
    KNOWLEDGE-BASED SYSTEMS, 2024, 305