Primal-Dual Deep Reinforcement Learning for Periodic Coverage-Assisted UAV Secure Communications

被引:0
作者
Qin, Yunhui [1 ]
Xing, Zhifang [1 ,3 ]
Li, Xulong [2 ]
Zhang, Zhongshan [3 ]
Zhang, Haijun [2 ]
机构
[1] Univ Sci & Technol Beijing, Natl Sch Elite Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Engn & Technol Res Ctr Convergence Network, Beijing, Peoples R China
[3] Beijing Inst Technol, Sch Cyberspace Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Autonomous aerial vehicles; Jamming; Optimization; Trajectory; Resource management; Security; Communication system security; Unmanned aerial vehicle (UAV); periodic coverage evaluation; primal-dual optimization; deep reinforcement learning; constrained Markov decision process; RESOURCE-ALLOCATION; TRAJECTORY DESIGN; SECRECY; ENERGY;
D O I
10.1109/TVT.2024.3450956
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Considering the UAVs' energy constraints and green communication requirements, this paper proposes a periodic coverage-assisted UAV secure communication system to maximize the worst-case average achievable secrecy rate.UAV base stations serve legitimate users while UAV jammers periodically dispatch interference signals to eavesdroppers. User scheduling, UAV trajectory and power allocation are modeled as a constrained Markov decision problem with coverage evaluation constraint. Then, the joint optimization of user scheduling, UAV trajectory and power allocation is achieved by the primal-dual soft actor-critic (SAC) algorithm. Specifically, the reward critic network assesses the secrecy rate and the cost critic network fits the coverage constraint. Meanwhile, the actor network generates the user scheduling, UAV trajectory and power allocation policy while updating the dual variables. For comparison, we also adopt other deep reinforcement learning (DRL) solutions namely the SAC algorithm and the twin-delayed deep deterministic policy gradient (TD3) as well as the traditional random method and greedy method. Simulation results show that the proposed algorithm performs best in the training speed, the reward performance and the secrecy rate.
引用
收藏
页码:19641 / 19652
页数:12
相关论文
共 50 条
  • [1] UAV-Assisted Wireless-Powered Secure Communications: Integration of Optimization and Deep Learning
    Heo, Kanghyun
    Lee, Woongsup
    Lee, Kisong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 10530 - 10545
  • [2] Deep reinforcement learning for IRS-assisted UAV covert communications
    Bi, Songjiao
    Hu, Langtao
    Liu, Quanjin
    Wu, Jianlan
    Yang, Rui
    Wu, Lei
    CHINA COMMUNICATIONS, 2023, 20 (12) : 131 - 141
  • [3] Green Communications: RIS-Assisted Fixed-Wing UAV Coverage Scheme Based on Deep Reinforcement Learning
    Lin, Na
    Liu, Chunxiao
    Wu, Tianxiong
    Hawbani, Ammar
    Zhao, Liang
    Wan, Shaohua
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (04): : 4115 - 4127
  • [4] Hybrid UAV-Enabled Secure Offloading via Deep Reinforcement Learning
    Yoo, Seonghoon
    Jeong, Seongah
    Kang, Joonhyuk
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (06) : 972 - 976
  • [5] Resource Scheduling Based on Deep Reinforcement Learning in UAV Assisted Emergency Communication Networks
    Wang, Chaowei
    Deng, Danhao
    Xu, Lexi
    Wang, Weidong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (06) : 3834 - 3848
  • [6] RIS-Assisted UAV Communications for IoT With Wireless Power Transfer Using Deep Reinforcement Learning
    Khoi Khac Nguyen
    Masaracchia, Antonino
    Sharma, Vishal
    Poor, H. Vincent
    Duong, Trung Q.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (05) : 1086 - 1096
  • [7] Safe Policies for Reinforcement Learning via Primal-Dual Methods
    Paternain, Santiago
    Calvo-Fullana, Miguel
    Chamon, Luiz F. O.
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (03) : 1321 - 1336
  • [8] Deep Reinforcement Learning-Based Dual-Timescale Service Caching and Computation Offloading for Multi-UAV Assisted MEC Systems
    Lin, Na
    Han, Xiao
    Hawbani, Ammar
    Sun, Yunhe
    Guan, Yunchong
    Zhao, Liang
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2025, 22 (01): : 605 - 617
  • [9] Deep Reinforcement Learning Based Dynamic Trajectory Control for UAV-Assisted Mobile Edge Computing
    Wang, Liang
    Wang, Kezhi
    Pan, Cunhua
    Xu, Wei
    Aslam, Nauman
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (10) : 3536 - 3550
  • [10] Energy Harvesting UAV-RIS-Assisted Maritime Communications Based on Deep Reinforcement Learning Against Jamming
    Yang, Helin
    Lin, Kailong
    Xiao, Liang
    Zhao, Yifeng
    Xiong, Zehui
    Han, Zhu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 9854 - 9868