Robust Mixed-order Graph Learning for incomplete multi-view clustering

被引:0
|
作者
Guo, Wei [1 ]
Che, Hangjun [1 ,2 ]
Leung, Man-Fai [3 ]
Jin, Long [4 ]
Wen, Shiping [5 ]
机构
[1] Southwest Univ, Coll Elect & Informat Engn, Chongqing 400715, Peoples R China
[2] Chongqing Key Lab Nonlinear Circuits & Intelligent, Chongqing 400715, Peoples R China
[3] Anglia Ruskin Univ, Fac Sci & Engn, Cambridge CB1 1PT, England
[4] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Incomplete multi-view clustering; High-order relationships; Similarity matrix; Consensus graph; Self-weighted manner;
D O I
10.1016/j.inffus.2024.102776
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete multi-view clustering (IMVC) aims to address the clustering problem of multi-view data with partially missing samples and has received widespread attention in recent years. Most existing IMVC methods still have the following issues that require to be further addressed. They focus solely on the first-order correlation information among samples, neglecting the more intricate high-order connections. Additionally, these methods always overlook the noise or inaccuracies in the self-representation matrix. To address above issues, a novel method named Robust Mixed-order Graph Learning (RMoGL) is proposed for IMVC. Specifically, to enhance the robustness to noise, the self-representation matrices are separated into clean graphs and noise graphs. To capture complex high-order relationships among samples, the dynamic high-order similarity graphs are innovatively constructed from the recovered data. The clean graphs are endowed with mixed-order information and tend towards to obtain a consensus graph via a self-weighted manner. An efficient algorithm based on Alternating Direction Method of Multipliers (ADMM) is designed to solve the proposed RMoGL, and superior performance is demonstrated by compared with nine state-of-the-art methods across eight datasets. The source code of this work is available at https://github.com/guowei1314/RMoGL.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Incomplete Multi-View Clustering With Paired and Balanced Dynamic Anchor Learning
    Li, Xingfeng
    Pan, Yuangang
    Sun, Yuan
    Sun, Quansen
    Sun, Yinghui
    Tsang, Ivor W.
    Ren, Zhenwen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1486 - 1497
  • [42] Strengthening incomplete multi-view clustering: An attention contrastive learning method
    Hou, Shudong
    Guo, Lanlan
    Wei, Xu
    IMAGE AND VISION COMPUTING, 2025, 157
  • [43] Cross-view Graph Matching Guided Anchor Alignment for Incomplete Multi-view Clustering
    Li, Xingfeng
    Sun, Yinghui
    Sun, Quansen
    Ren, Zhenwen
    Sun, Yuan
    INFORMATION FUSION, 2023, 100
  • [44] Localized Sparse Incomplete Multi-View Clustering
    Liu, Chengliang
    Wu, Zhihao
    Wen, Jie
    Xu, Yong
    Huang, Chao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5539 - 5551
  • [45] Incomplete multi-view clustering based on hypergraph
    Chen, Jin
    Xu, Huafu
    Xue, Jingjing
    Gao, Quanxue
    Deng, Cheng
    Lv, Ziyu
    INFORMATION FUSION, 2025, 117
  • [46] Incomplete Multi-view Clustering Algorithm Based on Multi-order Neighborhood Fusion
    Liu X.-L.
    Bai L.
    Zhao X.-W.
    Liang J.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (04): : 1354 - 1372
  • [47] Learning missing instances in latent space for incomplete multi-view clustering
    Yu, Zhiqi
    Ye, Mao
    Xiao, Siying
    Tian, Liang
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [48] Adaptive structural-guided multi-level representation learning with graph contrastive for incomplete multi-view clustering
    Wang, Haiyue
    Zhang, Wensheng
    Wang, Quan
    Ma, Xiaoke
    INFORMATION FUSION, 2025, 119
  • [49] High-Order Correlation Preserved Incomplete Multi-View Subspace Clustering
    Li, Zhenglai
    Tang, Chang
    Zheng, Xiao
    Liu, Xinwang
    Zhang, Wei
    Zhu, En
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2067 - 2080
  • [50] Deep spectral clustering network for incomplete multi-view clustering
    Li, Ao
    Mei, Sanlin
    Feng, Cong
    Gao, Tianyu
    Huang, Hai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148