Robust Mixed-order Graph Learning for incomplete multi-view clustering

被引:0
|
作者
Guo, Wei [1 ]
Che, Hangjun [1 ,2 ]
Leung, Man-Fai [3 ]
Jin, Long [4 ]
Wen, Shiping [5 ]
机构
[1] Southwest Univ, Coll Elect & Informat Engn, Chongqing 400715, Peoples R China
[2] Chongqing Key Lab Nonlinear Circuits & Intelligent, Chongqing 400715, Peoples R China
[3] Anglia Ruskin Univ, Fac Sci & Engn, Cambridge CB1 1PT, England
[4] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Incomplete multi-view clustering; High-order relationships; Similarity matrix; Consensus graph; Self-weighted manner;
D O I
10.1016/j.inffus.2024.102776
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incomplete multi-view clustering (IMVC) aims to address the clustering problem of multi-view data with partially missing samples and has received widespread attention in recent years. Most existing IMVC methods still have the following issues that require to be further addressed. They focus solely on the first-order correlation information among samples, neglecting the more intricate high-order connections. Additionally, these methods always overlook the noise or inaccuracies in the self-representation matrix. To address above issues, a novel method named Robust Mixed-order Graph Learning (RMoGL) is proposed for IMVC. Specifically, to enhance the robustness to noise, the self-representation matrices are separated into clean graphs and noise graphs. To capture complex high-order relationships among samples, the dynamic high-order similarity graphs are innovatively constructed from the recovered data. The clean graphs are endowed with mixed-order information and tend towards to obtain a consensus graph via a self-weighted manner. An efficient algorithm based on Alternating Direction Method of Multipliers (ADMM) is designed to solve the proposed RMoGL, and superior performance is demonstrated by compared with nine state-of-the-art methods across eight datasets. The source code of this work is available at https://github.com/guowei1314/RMoGL.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Robust high-order graph learning for incomplete multi-view clustering
    Wang, Daoyuan
    Ren, Fujian
    Zhuang, Yuntang
    Liang, Cheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 280
  • [2] Incomplete multi-view clustering by simultaneously learning robust representations and optimal graph structures
    Shang, Mingchao
    Liang, Cheng
    Luo, Jiawei
    Zhang, Huaxiang
    INFORMATION SCIENCES, 2023, 640
  • [3] Incomplete Multi-View Clustering With Joint Partition and Graph Learning
    Li, Lusi
    Wan, Zhiqiang
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 589 - 602
  • [4] Incomplete multi-view clustering via kernelized graph learning
    Xia, Dongxue
    Yang, Yan
    Yang, Shuhong
    Li, Tianrui
    INFORMATION SCIENCES, 2023, 625 : 1 - 19
  • [5] Adaptive graph learning for enhanced incomplete multi-view clustering
    Rui Hong
    Xiao-ping Chen
    Yan Zhou
    Hui Liu
    Tiancai Wan
    Taili Bai
    Pattern Analysis and Applications, 2025, 28 (2)
  • [6] Essential anchor graph learning for incomplete multi-view clustering
    Song, Peng
    Mu, Jinshuai
    Cheng, Yuanbo
    Liu, Zhaohu
    Zheng, Wenming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [7] Consensus Learning with Complete Graph Regularization for Incomplete Multi-view Clustering
    Zhang, Jie
    Fei, Lunke
    Teng, Shaohua
    Zhu, Qinghua
    Imad, Rida
    Wen, Jie
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1485 - 1492
  • [8] Tensorized topological graph learning for generalized incomplete multi-view clustering
    Zhang, Zheng
    He, Wen-Jue
    INFORMATION FUSION, 2023, 100
  • [9] Incomplete Multi-View Clustering with Regularized Hierarchical Graph
    Zhao, Shuping
    Fei, Lunke
    Wen, Jie
    Zhang, Bob
    Zhao, Pengyang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3060 - 3068
  • [10] Robust Tensor Recovery for Incomplete Multi-View Clustering
    Shen, Qiangqiang
    Xu, Tingting
    Liang, Yongsheng
    Chen, Yongyong
    He, Zhenyu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3856 - 3870