Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters

被引:0
作者
Yang, Nan-Nan [1 ]
Wang, Shang-Min [2 ]
Zhang, Jia-Liang [1 ]
Wen, Xiao-Qiong [1 ]
Kai, Zhao [1 ]
机构
[1] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
[2] Lanzhou Inst Phys, Sci & Technol Vacuum Technol & Phys Lab, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
pulsed plasma thruster; improved electro-mechanical model; electro-mechanical efficiency; plume kinetic energy; PROPELLANT; PERFORMANCE;
D O I
10.7498/aps.73.20241117
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The primary electro-mechanical model is developed for the acceleration kinetics of electromagnetic railguns. Pulsed plasma thrusters (PPTs), whose operation principle is similar to that of electromagnetic railguns, generate thrust via electromagnetic acceleration of plasma. Therefore, the electro-mechanical model serves as a valuable analytical tool to explore the mechanisms of energy conversion and thrust generation of PPTs. In fact, a PPT initiates discharge at its propellant surface and then ejects the discharged channel away to form accelerated plume. During the acceleration, the plasma channel assumes a curved shape, which is different from the flat sheet shape. The curved geometric shape of PPT discharge channel makes the flat current sheet model currently used in the electro-mechanical models inherently flawed. In this paper, a two-dimensional (2D) curved current sheet model is proposed to improve the PPT electro-mechanical model, by referring to the curved morphology of PPT discharge plasma channels. No matter what is the real geometry of the 2D current sheet, the Ampere force on discharge plasma channels and corresponding kinetics can be derived to obtain final kinetic energy of discharge plasma channels. As a result, the relation between the kinetic energy and the inductance of integral t end PPT discharge circuit is obtained and expressed as E k = i (t)2 d L eq (t) d t d t . To determine the inductance as a 0 temporal function, an algorithm for the inductance is proposed in which time-segment fitting of PPT discharge waveforms is adopted. Moreover, based on the temporal function of the inductance, PPT discharge waveforms can be simulated by using the ODE45 solver of MATLAB with high fitting goodness. So far, a calculation scheme for the kinetic energy of PPT plumes and simulation code for PPT discharge waveforms have set up based on the improved electro-mechanical model. To verify the improved model and the corresponding calculation scheme, the PPT prototype is used to evaluate its energy conversion efficiency. The results show that the model enables elucidating the low PPT electro-mechanical efficiency, which is attributed to the partition limitation of PPT energy to electromagnetic acceleration process. Accordingly, a possible exploration routine for elevating PPT electro-mechanical efficiency is suggested.
引用
收藏
页数:13
相关论文
共 38 条
  • [31] Wei R H, 1982, Chin. J. Space Sci., V2, P319
  • [32] Wu J J, 2023, J. Propul. Technol., V44, P11
  • [33] Application and development of the pulsed plasma thruster
    Wu, Zhiwen
    Huang, Tiankun
    Liu, Xiangyang
    Ling, William Yeong Liang
    Wang, Ningfei
    Ji, Lucheng
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2020, 22 (09)
  • [34] Optimization of the Energy Distribution in Ablative Pulsed Plasma Thrusters
    Wu, Zhiwen
    Sun, Guorui
    Huang, Tiankun
    Liu, Xiangyang
    Xie, Kan
    Wang, Ningfei
    [J]. AIAA JOURNAL, 2018, 56 (08) : 3024 - 3034
  • [35] Yang L, 2011, 47 AIAA ASME SAE ASE, P6077
  • [36] Yang L, 2015, 34 INT EL PROP C 6 N, P1
  • [37] A new ablation model for ablative pulsed plasma thrusters
    Zeng, Linghan
    Wu, Zhiwen
    Sun, Guorui
    Huang, Tiankun
    Xie, Kan
    Wang, Ningfei
    [J]. ACTA ASTRONAUTICA, 2019, 160 : 317 - 322
  • [38] A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster
    Zhang Hua
    Wu Jian-Jun
    Zhang Dai-Xian
    Zhang Rui
    He Zhen
    [J]. ACTA PHYSICA SINICA, 2013, 62 (21)