Global and local information-aware relational graph convolutional network for temporal knowledge graph completion

被引:0
|
作者
Wang, Shuo [1 ]
Chen, Shuxu [1 ]
Zhong, Zhaoqian [1 ]
机构
[1] Dalian Univ, Key Lab Adv Design & Intelligent Comp, Minist Educ, Dalian 116622, Peoples R China
基金
中国国家自然科学基金;
关键词
Temporal knowledge graph; Link prediction; Representation learning; Graph neural network;
D O I
10.1007/s10489-024-05987-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal knowledge graph completion (TKGC) focuses on inferring missing facts from temporal knowledge graphs (TKGs) and has been widely studied. While previous models based on graph neural networks (GNNs) have shown noteworthy outcomes, they tend to focus on designing complex modules to learn contextual representations. These complex solutions require a large number of parameters and heavy memory consumption. Additionally, existing TKGC approaches focus on exploiting static feature representation for entities and relationships, which fail to effectively capture the semantic information of contexts. In this paper, we propose a global and local information-aware relational graph convolutional neural network (GLARGCN) model to address these issues. First, we design a sampler, which captures significant neighbors by combining global historical event frequencies with local temporal relative displacements and requires no additional learnable parameters. We then employ a time-aware encoder to model timestamps, relations, and entities uniformly. We perform a graph convolution operation to learn a global graph representation. Finally, our method predicts missing entities using a scoring function. We evaluate the model on four benchmark datasets and one specific dataset with unseen timestamps. The experimental results demonstrate that our proposed GLARGCN model not only outperforms contemporary models but also shows robust performance in scenarios with unseen timestamps.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] PRGNN: Modeling high-order proximity with relational graph neural network for knowledge graph completion
    Zhu, Danhao
    NEUROCOMPUTING, 2024, 594
  • [22] Hyperbolic hierarchical graph attention network for knowledge graph completion
    Xu, Hao
    Chen, Shudong
    Qi, Donglin
    Tong, Da
    Yu, Yong
    Chen, Shuai
    High Technology Letters, 2024, 30 (03) : 271 - 279
  • [23] Hierarchical Perceptual Graph Attention Network for Knowledge Graph Completion
    Han, Wenhao
    Liu, Xuemei
    Zhang, Jianhao
    Li, Hairui
    ELECTRONICS, 2024, 13 (04)
  • [24] Knowledge graph completion based on graph contrastive attention network
    Liu D.
    Fang Q.
    Zhang X.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (08): : 1428 - 1435
  • [25] Temporal knowledge graph representation learning with local and global evolutions
    Zhang, Jiasheng
    Liang, Shuang
    Sheng, Yongpan
    Shao, Jie
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [26] Relation correlations-aware graph convolutional network with text-enhanced for knowledge graph embedding
    Yu, Hong
    Tang, Jinxuan
    Peng, Zhihan
    Wang, Ye
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (10) : 4659 - 4668
  • [27] Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion
    Wang, Jingqi
    Zhu, Cui
    Zhu, Wenjun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 722 - 734
  • [28] Relation-aware Graph Convolutional Networks for Multi-relational Network Alignment
    Fang, Yujie
    Li, Xin
    Ye, Rui
    Tan, Xiaoyan
    Zhao, Peiyao
    Wang, Mingzhong
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (02)
  • [29] Combining knowledge graph into metro passenger flow prediction: A split-attention relational graph convolutional network
    Zeng, Jie
    Tang, Jinjun
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [30] Local Structural Aware Heterogeneous Information Network Embedding Based on Relational Self-Attention Graph Neural Network
    Cao, Meng
    Yuan, Jinliang
    Xu, Ming
    Yu, Hualei
    Wang, Chongjun
    IEEE ACCESS, 2021, 9 : 88301 - 88312