Global and local information-aware relational graph convolutional network for temporal knowledge graph completion

被引:0
|
作者
Wang, Shuo [1 ]
Chen, Shuxu [1 ]
Zhong, Zhaoqian [1 ]
机构
[1] Dalian Univ, Key Lab Adv Design & Intelligent Comp, Minist Educ, Dalian 116622, Peoples R China
基金
中国国家自然科学基金;
关键词
Temporal knowledge graph; Link prediction; Representation learning; Graph neural network;
D O I
10.1007/s10489-024-05987-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal knowledge graph completion (TKGC) focuses on inferring missing facts from temporal knowledge graphs (TKGs) and has been widely studied. While previous models based on graph neural networks (GNNs) have shown noteworthy outcomes, they tend to focus on designing complex modules to learn contextual representations. These complex solutions require a large number of parameters and heavy memory consumption. Additionally, existing TKGC approaches focus on exploiting static feature representation for entities and relationships, which fail to effectively capture the semantic information of contexts. In this paper, we propose a global and local information-aware relational graph convolutional neural network (GLARGCN) model to address these issues. First, we design a sampler, which captures significant neighbors by combining global historical event frequencies with local temporal relative displacements and requires no additional learnable parameters. We then employ a time-aware encoder to model timestamps, relations, and entities uniformly. We perform a graph convolution operation to learn a global graph representation. Finally, our method predicts missing entities using a scoring function. We evaluate the model on four benchmark datasets and one specific dataset with unseen timestamps. The experimental results demonstrate that our proposed GLARGCN model not only outperforms contemporary models but also shows robust performance in scenarios with unseen timestamps.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] GLANet: temporal knowledge graph completion based on global and local information-aware network
    Wang, Jingbin
    Lin, Xinyu
    Huang, Hao
    Ke, Xifan
    Wu, Renfei
    You, Changkai
    Guo, Kun
    APPLIED INTELLIGENCE, 2023, 53 (16) : 19285 - 19301
  • [2] GLANet: temporal knowledge graph completion based on global and local information-aware network
    Jingbin Wang
    Xinyu Lin
    Hao Huang
    Xifan Ke
    Renfei Wu
    Changkai You
    Kun Guo
    Applied Intelligence, 2023, 53 : 19285 - 19301
  • [3] Enhance Temporal Knowledge Graph Completion via Time-Aware Attention Graph Convolutional Network
    Wei, Haohui
    Huang, Hong
    Zhang, Teng
    Shi, Xuanhua
    Jin, Hai
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 122 - 137
  • [4] LG-GNN: Local and Global Information-aware Graph Neural Network for default detection
    Liu, Yi
    Wang, Xuan
    Meng, Tao
    Ai, Wei
    Li, Keqin
    COMPUTERS & OPERATIONS RESEARCH, 2024, 169
  • [5] Entities and Relations Aware Graph Convolutional Network for Knowledge Base Completion
    Yang, Kun
    Gao, Haipeng
    Yang, Yuxue
    Qin, Ke
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2021), 2021, : 71 - 75
  • [6] Dynamic knowledge graph completion of temporal aware combination
    Li, Zhongliang
    Chen, Qi
    Shi, Lin
    Yang, Chao
    Zou, Xianming
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (08): : 1738 - 1747
  • [7] Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion
    Yin, Hong
    Zhong, Jiang
    Li, Rongzhen
    Li, Xue
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [8] MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion
    Dai, Guoquan
    Wang, Xizhao
    Zou, Xiaoying
    Liu, Chao
    Cen, Si
    NEURAL NETWORKS, 2022, 154 : 234 - 245
  • [9] TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding
    Xie, Zhiwen
    Zhu, Runjie
    Liu, Jin
    Zhou, Guangyou
    Huang, Jimmy Xiangji
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 2246 - 2258
  • [10] Learnable convolutional attention network for knowledge graph completion
    Shang, Bin
    Zhao, Yinliang
    Liu, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 285