PUNet: A Semi-Supervised Anomaly Detection Model for Network Anomaly Detection Based on Positive Unlabeled Data

被引:0
|
作者
Long, Gang [1 ]
Zhang, Zhaoxin [1 ]
机构
[1] Harbin Inst Technol, Fac Comp, Harbin 150000, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 81卷 / 01期
关键词
Network anomaly detection; representation learning; candidate set; CatBoost;
D O I
10.32604/cmc.2024.054558
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network anomaly detection plays a vital role in safeguarding network security. However, the existing network anomaly detection task is typically based on the one-class zero-positive scenario. This approach is susceptible to overfitting during the training process due to discrepancies in data distribution between the training set and the test set. This phenomenon is known as prediction drift. Additionally, the rarity of anomaly data, often masked by normal data, further complicates network anomaly detection. To address these challenges, we propose the PUNet network, which ingeniously combines the strengths of traditional machine learning and deep learning techniques for anomaly detection. Specifically, PUNet employs a reconstruction-based autoencoder to pre-train normal data, enabling the network to capture potential features and correlations within the data. Subsequently, PUNet integrates a sampling algorithm to construct a pseudo-label candidate set among the outliers based on the reconstruction loss of the samples. This approach effectively mitigates the prediction drift problem by incorporating abnormal samples. Furthermore, PUNet utilizes the CatBoost classifier for anomaly detection to tackle potential data imbalance issues within the candidate set. Extensive experimental evaluations demonstrate that PUNet effectively resolves the prediction drift and data imbalance problems, significantly outperforming competing methods.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 50 条
  • [1] A SEMI-SUPERVISED MODEL FOR NETWORK TRAFFIC ANOMALY DETECTION
    Nguyen Ha Duong
    Hoang Dang Hai
    2015 17TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2015, : 70 - 75
  • [2] Network anomaly detection based on semi-supervised clustering
    Wei Xiaotao
    Huang Houkuan
    Tian Shengfeng
    NEW ADVANCES IN SIMULATION, MODELLING AND OPTIMIZATION (SMO '07), 2007, : 440 - +
  • [3] Semi-supervised Deep Learning for Network Anomaly Detection
    Sun, Yuanyuan
    Guo, Lili
    Li, Ye
    Xu, Lele
    Wang, Yongming
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2019, PT II, 2020, 11945 : 383 - 390
  • [4] Semi-Supervised Statistical Approach for Network Anomaly Detection
    Aissa, Naila Belhadj
    Guerroumia, Mohamed
    7TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2016) / THE 6TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2016) / AFFILIATED WORKSHOPS, 2016, 83 : 1090 - 1095
  • [5] ConNet: Deep Semi-Supervised Anomaly Detection Based on Sparse Positive Samples
    Gao, Feng
    Li, Jing
    Cheng, Ruiying
    Zhou, Yi
    Ye, Ying
    IEEE ACCESS, 2021, 9 : 67249 - 67258
  • [6] Semi-supervised Graph Edge Convolutional Network for Anomaly Detection
    Lun, Zhicheng
    Gu, Xiaoyan
    Fan, Haihui
    Li, Bo
    Wang, Weiping
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 141 - 152
  • [7] A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data
    Song, Hongchao
    Jiang, Zhuqing
    Men, Aidong
    Yang, Bo
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [8] Semi-supervised log anomaly detection based on bidirectional temporal convolution network
    Yin, Zhichao
    Kong, Xian
    Yin, Chunyong
    COMPUTERS & SECURITY, 2024, 140
  • [9] Semi-supervised Anomaly Detection on Attributed Graphs
    Kumagai, Atsutoshi
    Iwata, Tomoharu
    Fujiwara, Yasuhiro
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] Semi-Supervised Anomaly Detection with Contrastive Regularization
    Jezequel, Loic
    Vu, Ngoc-Son
    Beaudet, Jean
    Histace, Aymeric
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2664 - 2671