Rheology of silicon carbide/vinyl ester nanocomposites

被引:0
|
作者
Yong, Virginia [1 ]
Hahn, H. Thomas [1 ,2 ]
机构
[1] Materials Science and Engineering Department, University of California, Los Angeles, CA 90095
[2] Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095
来源
Journal of Applied Polymer Science | 2006年 / 102卷 / 05期
关键词
Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer-size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface-active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the Theological behavior of SiC-nanoparticle-filled vinyl ester resin systems with the Bingham; power-law; Herschel-Bulkley; and Casson models. The maximum particle loading corresponding to infinite viscosity has been determined to be a 0.1 volume fraction with the (1 - ηr-1/2)-φ dependence (where ηr is the relative viscosity and φ is the particle volume frac tion). The optimum fractional weight percentage of the dispersants (wt % dispersant/wt % SiC) is around 40% for 30-nm SiC nanoparticles; which is much higher than 1-3% for micrometer-size particles. SiC nanoparticles at a concentration of 9.2 wt % (0.03 volume fraction) cause a fourfold increase in the resin viscosity. The addition of a dispersant at the optimum dosage lowers the viscosity of SiC/vinyl ester suspensions by 50%. The reduction in the viscosity is substantial to improve the processability of SiC/vinyl ester nanocomposites. © 2006 Wiley Periodicals; Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:4365 / 4371
相关论文
共 50 条
  • [31] Mechanical properties of chemically functionalized clay vinyl ester nanocomposites
    Balakrishnan, S
    Raghavan, D
    MECHANICAL PROPERTIES OF NANOSTRUCTURED MATERIALS AND NANOCOMPOSITES, 2004, 791 : 261 - 263
  • [32] Synthesis and characterization of vinyl ester/inorganic layered material nanocomposites
    Tsai, Tsung-Yen
    Bunekar, Naveen
    Yen, Chein-Hsiang
    Lin, Yu-Bing
    RSC ADVANCES, 2016, 6 (104) : 102797 - 102803
  • [33] Fabrication and mechanical properties of silicon carbide-silicon nitride nanocomposites
    Kim, YW
    Mitomo, M
    JOURNAL OF MATERIALS SCIENCE, 2000, 35 (23) : 5885 - 5890
  • [34] Revisiting the mechanical behavior of alumina silicon carbide nanocomposites
    Perez-Rigueiro, J
    Pastor, JY
    Llorca, J
    Elices, M
    Miranzo, P
    Moya, JS
    ACTA MATERIALIA, 1998, 46 (15) : 5399 - 5411
  • [35] Laser microfabrication of alumina-silicon carbide nanocomposites
    Kim, Kwang-Ryul
    Kim, Jae-Hoon
    Kim, Kwang-Ho
    Niihara, Koichi
    Jeong, Young-Keun
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2008, 9 (04): : 421 - 424
  • [36] Microwave sintering of alumina-silicon carbide nanocomposites
    Ahmad, Kaleem
    Wei, Pan
    Jie, Si Wen
    HIGH-PERFORMANCE CERAMICS IV, PTS 1-3, 2007, 336-338 : 1072 - 1075
  • [37] Oxidation behaviour of alumina-silicon carbide nanocomposites
    Sciti, D
    Bellosi, A
    JOURNAL OF MATERIALS SCIENCE, 1998, 33 (15) : 3823 - 3830
  • [38] Synthesis and potential applications of silicon carbide nanomaterials/nanocomposites
    Sun, Kaidi
    Wang, Tongtong
    Gong, Weibo
    Lu, Wenyang
    He, Xin
    Eddings, Eric G.
    Fan, Maohong
    CERAMICS INTERNATIONAL, 2022, 48 (22) : 32571 - 32587
  • [39] Processing of silicon carbide-mullite-alumina nanocomposites
    Sakka, Yoshio, 1600, American Ceramic Soc, Westerville, OH, United States (78):
  • [40] PROCESSING OF SILICON CARBIDE-MULLITE-ALUMINA NANOCOMPOSITES
    SAKKA, Y
    BIDINGER, DD
    AKSAY, IA
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (02) : 479 - 486