Rheology of silicon carbide/vinyl ester nanocomposites

被引:0
|
作者
Yong, Virginia [1 ]
Hahn, H. Thomas [1 ,2 ]
机构
[1] Materials Science and Engineering Department, University of California, Los Angeles, CA 90095
[2] Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095
来源
Journal of Applied Polymer Science | 2006年 / 102卷 / 05期
关键词
Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer-size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface-active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the Theological behavior of SiC-nanoparticle-filled vinyl ester resin systems with the Bingham; power-law; Herschel-Bulkley; and Casson models. The maximum particle loading corresponding to infinite viscosity has been determined to be a 0.1 volume fraction with the (1 - ηr-1/2)-φ dependence (where ηr is the relative viscosity and φ is the particle volume frac tion). The optimum fractional weight percentage of the dispersants (wt % dispersant/wt % SiC) is around 40% for 30-nm SiC nanoparticles; which is much higher than 1-3% for micrometer-size particles. SiC nanoparticles at a concentration of 9.2 wt % (0.03 volume fraction) cause a fourfold increase in the resin viscosity. The addition of a dispersant at the optimum dosage lowers the viscosity of SiC/vinyl ester suspensions by 50%. The reduction in the viscosity is substantial to improve the processability of SiC/vinyl ester nanocomposites. © 2006 Wiley Periodicals; Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:4365 / 4371
相关论文
共 50 条
  • [21] Fracture mode of alumina/silicon carbide nanocomposites
    Zimmermann, A
    Hoffman, M
    Rödel, J
    JOURNAL OF MATERIALS RESEARCH, 2000, 15 (01) : 107 - 114
  • [22] Sliding wear of alumina/silicon carbide nanocomposites
    Rodríguez, J
    Martín, A
    Pastor, JY
    Llorca, J
    Bartolomé, JF
    Moya, JS
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (08) : 2252 - 2254
  • [23] Pressureless sintered alumina silicon carbide nanocomposites
    Niihara, K
    Jeong, YK
    Sekino, T
    Choa, YH
    ADVANCES IN CERAMIC MATRIX COMPOSITES IV, 1999, 96 : 185 - 196
  • [24] Mechanical properties of nickel silicon carbide nanocomposites
    Zimmerman, AF
    Palumbo, G
    Aust, KT
    Erb, U
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 328 (1-2): : 137 - 146
  • [25] DUCTILE DEFORMATION IN ALUMINA/SILICON CARBIDE NANOCOMPOSITES
    Wu, Houzheng
    Roberts, Steve
    Derby, Brian
    NANOSTRUCTURED MATERIALS AND NANOTECHNOLOGY III, 2010, 30 (07): : 155 - +
  • [26] Study on mechanical and microcrystalline on vinyl ester hybrid nanocomposites by WAXS
    Pashaei, Shahryar
    Hosseinzadeh, Soleyman
    Siddaramaiah, Basavarajaiah
    Somashekar, R.
    Ghorbani, Naser
    IRANIAN CHEMICAL COMMUNICATION, 2016, 4 (04) : 399 - 413
  • [27] Processing of iron oxide-epoxy vinyl ester nanocomposites
    Park, SS
    Bernet, N
    de la Roche, S
    Hahn, HT
    JOURNAL OF COMPOSITE MATERIALS, 2003, 37 (05) : 465 - 476
  • [28] Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites
    Thostenson, Erik T.
    Ziaee, Saeed
    Chou, Tsu-Wei
    COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (06) : 801 - 804
  • [29] Models of moisture diffusion through vinyl ester/clay nanocomposites
    Liu, Q.
    De Kee, D.
    Gupta, R. K.
    AICHE JOURNAL, 2008, 54 (02) : 364 - 371
  • [30] Mechanical And Thermal Behavior of Carbon Nanotubes/Vinyl Ester Nanocomposites
    Cotet, Adrian
    Bastiurea, Marian
    Andrei, Gabriel
    Cantaragiu, Alina
    Hadar, Anton
    MATERIALE PLASTICE, 2019, 56 (04) : 735 - 743