Rheology of silicon carbide/vinyl ester nanocomposites

被引:0
|
作者
Yong, Virginia [1 ]
Hahn, H. Thomas [1 ,2 ]
机构
[1] Materials Science and Engineering Department, University of California, Los Angeles, CA 90095
[2] Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095
来源
Journal of Applied Polymer Science | 2006年 / 102卷 / 05期
关键词
Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer-size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface-active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the Theological behavior of SiC-nanoparticle-filled vinyl ester resin systems with the Bingham; power-law; Herschel-Bulkley; and Casson models. The maximum particle loading corresponding to infinite viscosity has been determined to be a 0.1 volume fraction with the (1 - ηr-1/2)-φ dependence (where ηr is the relative viscosity and φ is the particle volume frac tion). The optimum fractional weight percentage of the dispersants (wt % dispersant/wt % SiC) is around 40% for 30-nm SiC nanoparticles; which is much higher than 1-3% for micrometer-size particles. SiC nanoparticles at a concentration of 9.2 wt % (0.03 volume fraction) cause a fourfold increase in the resin viscosity. The addition of a dispersant at the optimum dosage lowers the viscosity of SiC/vinyl ester suspensions by 50%. The reduction in the viscosity is substantial to improve the processability of SiC/vinyl ester nanocomposites. © 2006 Wiley Periodicals; Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:4365 / 4371
相关论文
共 50 条
  • [1] Rheology of silicon carbide/vinyl ester nanocomposites
    Yong, Virginia
    Hahn, H. Thomas
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102 (05) : 4365 - 4371
  • [2] Characterization of Mechanical and Fracture Behaviour in Nano-Silicon Carbide-Reinforced Vinyl-Ester Nanocomposites
    Alhuthali, Abdullah M.
    Low, It-Meng
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (09) : 921 - 930
  • [3] Simultaneous study of cure kinetics and rheology of montmorillonite/vinyl ester resin nanocomposites
    Akhlaghi, Shahin
    Kalaee, Mohammadreza
    Jowdar, Effat
    Nouri, Ali
    Mazinani, Saeedeh
    Afshari, Mehdi
    Famili, Mohamadhosein Navid
    Amini, Navid
    Behrouz, Toktam
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2012, 23 (03) : 534 - 544
  • [4] Alumina/silicon carbide nanocomposites
    Todd, R
    NOVEL NANOCRYSTALLINE ALLOYS AND MAGNETIC NANOMATERIALS, 2005, : 220 - 232
  • [5] Irradiation of poly(vinyl ester)/clay nanocomposites
    Mohaddespour, Ahmad
    Ahmadi, Seyed J.
    Abolghassemi, Hossein
    Mahjoub, Seyed M.
    Atashrouz, Saeid
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (01) : 17 - 25
  • [6] Processing and properties of SiC/vinyl ester nanocomposites
    Yong, V
    Hahn, HT
    NANOTECHNOLOGY, 2004, 15 (09) : 1338 - 1343
  • [7] Vinyl ester/clay based nanocomposites: a complementary study of vinyl ester polymerization by hyphenated rheo-Fourier transform infrared and separate rheology/Fourier transform infrared measurements
    Liu, Jia
    Ishida, Hatsuo
    Maia, Joao
    POLYMER INTERNATIONAL, 2014, 63 (03) : 521 - 528
  • [8] Comparative Study of Mechanical Behavior of Silicon Carbide Filled and Boron Carbide Filled Glass Fiber Reinforced Vinyl Ester Composites
    Kulkarni, Sudheer D.
    Chethan, S.
    ADVANCES IN POLYMER COMPOSITES: MECHANICS, CHARACTERIZATION AND APPLICATIONS, 2019, 2057
  • [9] Creep of silicon nitride/silicon carbide ceramic nanocomposites
    Gasch, MJ
    Wang, JL
    Liu, KC
    Lara-Curzio, E
    Mukherjee, AK
    CREEP DEFORMATION: FUNDAMENTALS AND APPLICATIONS, 2002, : 247 - 256
  • [10] SILICON-CARBIDE - TITANIUM CARBIDE NANOCOMPOSITES - MICROSTRUCTURAL INVESTIGATION
    GOURBILLEAU, F
    MAUPAS, H
    HILLEL, R
    CHERMANT, JL
    MATERIALS RESEARCH BULLETIN, 1994, 29 (06) : 673 - 680