Deep reinforcement learning-based spatio-temporal graph neural network for solving job shop scheduling problem

被引:0
|
作者
Gebreyesus, Goytom [1 ]
Fellek, Getu [1 ]
Farid, Ahmed [1 ]
Hou, Sicheng [1 ]
Fujimura, Shigeru [1 ]
Yoshie, Osamu [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Fukuoka, Japan
关键词
Deep reinforcement learning; Spatio-temporal representation; Job shop scheduling; Graph neural network; MIGRATING BIRDS OPTIMIZATION; ALGORITHM; BENCHMARKS; TIME;
D O I
10.1007/s12065-024-00989-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The job shop scheduling problem (JSSP) is a well-known NP-hard combinatorial optimization problem that focuses on assigning tasks to limited resources while adhering to certain constraints. Currently, deep reinforcement learning (DRL)-based solutions are being widely used to solve the JSSP by defining the problem structure on disjunctive graphs. Some of the proposed approaches attempt to leverage the structural information of the JSSP to capture the dynamics of the environment without considering the time dependency within the JSSP. However, learning graph representations only from the structural relationship of nodes results in a weak and incomplete representation of these graphs which does not provide an expressive representation of the dynamics in the environment. In this study, unlike existing frameworks, we defined the JSSP as a dynamic graph to explicitly consider the time-varying aspect of the JSSP environment. To this end, we propose a novel DRL framework that captures both the spatial and temporal attributes of the JSSP to construct rich and complete graph representations. Our DRL framework introduces a novel attentive graph isomorphism network (Attentive-GIN)-based spatial block to learn the structural relationship and a temporal block to capture the time dependency. Additionally, we designed a gated fusion block that selectively combines the learned representations from the two blocks. We trained the model using the proximal policy optimization algorithm of reinforcement learning. Experimental results show that our trained model exhibits significant performance enhancement compared to heuristic dispatching rules and learning-based solutions for both randomly generated datasets and public benchmarks.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A new ensemble deep graph reinforcement learning network for spatio-temporal traffic volume forecasting in a freeway network
    Shang, Pan
    Liu, Xinwei
    Yu, Chengqing
    Yan, Guangxi
    Xiang, Qingqing
    Mi, Xiwei
    DIGITAL SIGNAL PROCESSING, 2022, 123
  • [42] Interactive Operation Agent Scheduling Method for Job Shop Based on Deep Reinforcement Learning
    Chen R.
    Li W.
    Wang C.
    Yang H.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 78 - 88
  • [43] Combining Reinforcement Learning Algorithms with Graph Neural Networks to Solve Dynamic Job Shop Scheduling Problems
    Yang, Zhong
    Bi, Li
    Jiao, Xiaogang
    PROCESSES, 2023, 11 (05)
  • [44] Power allocation using spatio-temporal graph neural networks and reinforcement learning
    Jamshidiha, Saeed
    Pourahmadi, Vahid
    Mohammadi, Abbas
    Bennis, Mehdi
    WIRELESS NETWORKS, 2025, 31 (02) : 1163 - 1176
  • [45] Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
    Wang, Libing
    Hu, Xin
    Wang, Yin
    Xu, Sujie
    Ma, Shijun
    Yang, Kexin
    Liu, Zhijun
    Wang, Weidong
    COMPUTER NETWORKS, 2021, 190 (190)
  • [46] Learning to Dispatch for Flexible Job Shop Scheduling Based on Deep Reinforcement Learning via Graph Gated Channel Transformation
    Huang, Dainlin
    Zhao, Hong
    Zhang, Lijun
    Chen, Kangping
    IEEE ACCESS, 2024, 12 : 50935 - 50948
  • [47] Deep Reinforcement Learning for Dynamic Flexible Job Shop Scheduling with Random Job Arrival
    Chang, Jingru
    Yu, Dong
    Hu, Yi
    He, Wuwei
    Yu, Haoyu
    PROCESSES, 2022, 10 (04)
  • [48] A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time
    Wu, Xinquan
    Yan, Xuefeng
    Guan, Donghai
    Wei, Mingqiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [49] Deep reinforcement learning for dynamic flexible job shop scheduling problem considering variable processing times
    Zhang, Lu
    Feng, Yi
    Xiao, Qinge
    Xu, Yunlang
    Li, Di
    Yang, Dongsheng
    Yang, Zhile
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 : 257 - 273
  • [50] Production Scheduling based on Deep Reinforcement Learning using Graph Convolutional Neural Network
    Seito, Takanari
    Munakata, Satoshi
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 766 - 772