Deep reinforcement learning-based spatio-temporal graph neural network for solving job shop scheduling problem

被引:0
作者
Gebreyesus, Goytom [1 ]
Fellek, Getu [1 ]
Farid, Ahmed [1 ]
Hou, Sicheng [1 ]
Fujimura, Shigeru [1 ]
Yoshie, Osamu [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Fukuoka, Japan
关键词
Deep reinforcement learning; Spatio-temporal representation; Job shop scheduling; Graph neural network; MIGRATING BIRDS OPTIMIZATION; ALGORITHM; BENCHMARKS; TIME;
D O I
10.1007/s12065-024-00989-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The job shop scheduling problem (JSSP) is a well-known NP-hard combinatorial optimization problem that focuses on assigning tasks to limited resources while adhering to certain constraints. Currently, deep reinforcement learning (DRL)-based solutions are being widely used to solve the JSSP by defining the problem structure on disjunctive graphs. Some of the proposed approaches attempt to leverage the structural information of the JSSP to capture the dynamics of the environment without considering the time dependency within the JSSP. However, learning graph representations only from the structural relationship of nodes results in a weak and incomplete representation of these graphs which does not provide an expressive representation of the dynamics in the environment. In this study, unlike existing frameworks, we defined the JSSP as a dynamic graph to explicitly consider the time-varying aspect of the JSSP environment. To this end, we propose a novel DRL framework that captures both the spatial and temporal attributes of the JSSP to construct rich and complete graph representations. Our DRL framework introduces a novel attentive graph isomorphism network (Attentive-GIN)-based spatial block to learn the structural relationship and a temporal block to capture the time dependency. Additionally, we designed a gated fusion block that selectively combines the learned representations from the two blocks. We trained the model using the proximal policy optimization algorithm of reinforcement learning. Experimental results show that our trained model exhibits significant performance enhancement compared to heuristic dispatching rules and learning-based solutions for both randomly generated datasets and public benchmarks.
引用
收藏
页数:18
相关论文
共 55 条
[31]  
Parisotto E., 2020, INT C MACH LEARN, P7487
[32]   Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning [J].
Park, Junyoung ;
Chun, Jaehyeong ;
Kim, Sang Hun ;
Kim, Youngkook ;
Park, Jinkyoo .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (11) :3360-3377
[33]  
Pinson E., 1995, Scheduling Theory and Its Applications, V93, P277
[34]   Optimization of job shop scheduling problem based on deep reinforcement learning [J].
Qiao, Dongping ;
Duan, Lvqi ;
Li, Honglei ;
Xiao, Yanqiu .
EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) :371-383
[35]   A comparison of priority rules for the job shop scheduling problem under different flow time- and tardiness-related objective functions [J].
Sels, Veronique ;
Gheysen, Nele ;
Vanhoucke, Mario .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2012, 50 (15) :4255-4270
[36]   A reinforcement learning approach to parameter estimation in dynamic job shop scheduling [J].
Shahrabi, Jamal ;
Adibi, Mohammad Amin ;
Mahootchi, Masoud .
COMPUTERS & INDUSTRIAL ENGINEERING, 2017, 110 :75-82
[37]  
Shanggen Yang, 2022, 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), P59, DOI 10.1109/ICCECE54139.2022.9712705
[38]   Semisupervised Defect Segmentation With Pairwise Similarity Map Consistency and Ensemble-Based Cross Pseudolabels [J].
Sime, Dejene M. ;
Wang, Guotai ;
Zeng, Zhi ;
Wang, Wei ;
Peng, Bei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (09) :9535-9545
[39]   Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning [J].
Song, Wen ;
Chen, Xinyang ;
Li, Qiqiang ;
Cao, Zhiguang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) :1600-1610
[40]   UCRLF: unified constrained reinforcement learning framework for phase-aware architectures for autonomous vehicle signaling and trajectory optimization [J].
Sur, Chiranjib .
EVOLUTIONARY INTELLIGENCE, 2019, 12 (04) :689-712