Toward the Development of Graphene/Chitosan Biocomposite Aerogels with Enhanced Mechanical and Thermal Insulation Performance

被引:1
|
作者
Le, Dang-Thi [1 ,2 ]
Carbonnier, Benjamin [1 ]
Hamadi, Sena [1 ]
Grande, Daniel [1 ]
Fois, Magali [3 ]
Naili, Salah [2 ]
Nguyen, Vu-Hieu [2 ]
Mahouche-Chergui, Samia [1 ]
机构
[1] Univ Paris Est Creteil, CNRS, UMR 7182, ICMPE, F-94320 Thiais, France
[2] Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, F-94010 Creteil, France
[3] Univ Paris Est Creteil, CERTES, F-94010 Creteil, France
来源
ACS APPLIED POLYMER MATERIALS | 2024年 / 6卷 / 21期
关键词
chitosan-based aerogel; graphene; microstructure; robustness; thermal conductivity; GRAPHENE OXIDE; COMPOSITE AEROGELS; ENERGY-STORAGE; HYBRID AEROGEL; CELLULOSE; CHITOSAN; NANOCOMPOSITES; NANOMATERIAL; LIGHTWEIGHT; IMPROVEMENT;
D O I
10.1021/acsapm.4c02301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing lightweight three-dimensional (3D) materials from biopolymers that exhibit high heat resistance, improved mechanical strength, and low thermal conductivity is crucial for numerous advanced applications. Herein, we successfully fabricated low-density biocomposite aerogels based on chitosan (CS) with exceptional porous structures (porosity exceeding 98%) by utilizing a straightforward approach free of hazardous chemicals. These aerogels combined high mechanical performance, thermal insulation, thermal stability and fire safety. This was achieved through the incorporation of a small amount of graphene nanofillers (G) using an eco-friendly freeze-drying process. The significant influence of the synthesis method as well as the composition and microstructure on the mechanical and thermal insulation performance of G-CS aerogels were highlighted. Two dispersion approaches for graphene were compared: direct addition to the CS solution followed by sonication, and predispersion in water before incorporation into the CS solution. After multidirectional random freezing at different temperatures (-30, -60, and -196 degrees C) and subsequent freeze-drying, the second approach yielded superior mechanical properties in G-CS aerogels. These aerogels showed improved mechanical resistance with increasing graphene content, reaching a Young's modulus of 376 KPa, which was 2.75 times larger than that of pure chitosan aerogel. G(10)-CS showed a remarkable compressive strength to bear loads, approximately 3000 times its weight. Scanning electron microscopy (SEM) analyses revealed that graphene incorporation and reducing the freezing temperature to -60 degrees C transformed the aerogel's microstructure from lamellar to a 3D interconnected honeycomb-like structure, resulting in reduced thermal conductivity (0.038 W m(-1) K-1). The G(10)-CS composite aerogel is expected to be a promising candidate for various practical applications, including thermal and acoustic insulation, energy storage systems, gas detection sensors, biomedical devices, environmental remediation, advanced filtration technologies, and drug delivery.
引用
收藏
页码:13132 / 13146
页数:15
相关论文
共 50 条
  • [21] Enhanced mechanical strength and antibacterial properties of Chitosan/Graphene oxide composite fibres
    Jin, Lijun
    Chen, Qinjia
    Hu, Xinjun
    Chen, Huqiang
    Lu, Yue
    Zhang, Yujin
    Zhou, Hongyu
    Bai, Yongxiao
    CELLULOSE, 2022, 29 (07) : 3889 - 3900
  • [22] Hyperbranched graphene oxide structure-based epoxy nanocomposite with simultaneous enhanced mechanical properties, thermal conductivity, and superior electrical insulation
    Zhao, Yalin
    Wu, Zhixiong
    Guo, Shibin
    Zhou, Zhengrong
    Miao, Zhicong
    Xie, Shiyong
    Huang, Rongjin
    Li, Laifeng
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 217
  • [23] Double cross-linked biomass aerogels with enhanced mechanical strength and flame retardancy for construction thermal insulation
    Gong, Ling
    An, Xinyu
    Ma, Chang
    Wang, Rui
    Zhou, Xing
    Liu, Chang
    Li, Ning
    Liu, Zhiming
    Li, Xu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 281
  • [24] "Finger coral-like" ceramic fiber aerogels with enhanced high-temperature thermal insulation, anti-oxidation, and mechanical performance
    Wang, Jianyu
    Li, Hongyan
    Liu, Hongli
    Lu, Le
    Wang, Tao
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 225
  • [25] Preferentially oriented SiC/graphene composites for enhanced mechanical and thermal properties
    Chen, Chen
    Han, Xiaochun
    Shen, Huahai
    Tan, Yongqiang
    Zhang, Haibin
    Qin, Yi
    Peng, Shuming
    CERAMICS INTERNATIONAL, 2020, 46 (14) : 23173 - 23179
  • [26] "Stiff-Soft" Binary Synergistic Aerogels with Superflexibility and High Thermal Insulation Performance
    Zhang, Junyan
    Cheng, Yanhua
    Tebyetekerwa, Mike
    Meng, Si
    Zhu, Meifang
    Lu, Yunfeng
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (15)
  • [27] Multicovalent crosslinked double-network graphene-polyorganosiloxane hybrid aerogels toward efficient thermal insulation and water purification
    Zhang, Lan
    Shao, Gaofeng
    Xu, Rupan
    Ding, Chengxi
    Hu, Dongxiao
    Zhao, Huan
    Huang, Xiaogu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 647
  • [28] Enhanced thermal and mechanical properties of polyimide/graphene composites
    Dai, Wen
    Yu, Jinhong
    Wang, Yi
    Song, Yingze
    Bai, Hua
    Nishimura, Kazuhito
    Liao, Huiwei
    Jiang, Nan
    MACROMOLECULAR RESEARCH, 2014, 22 (09) : 983 - 989
  • [29] Enhanced Thermal Performance of Composite Phase Change Materials Based on Hybrid Graphene Aerogels for Thermal Energy Storage
    Shang, Yu
    Zhang, Dong
    An, Minrong
    Li, Zhao
    MATERIALS, 2022, 15 (15)
  • [30] Enhanced Thermal and Mechanical Performance in Insulated Aramid/Functionalized Graphene Composite
    Fan, Xiaozhou
    Zhang, Wenqi
    Wang, Haoyu
    Li, Changyu
    Yu, Xiang
    Fan, Sidi
    Lv, Fangcheng
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2024, 31 (04) : 1805 - 1814