Finite-time stability and stabilization: State of the art

被引:65
作者
Laboratoire Paul Painlevé , UFR de Mathématiques, Université des Sciences et Technologies de Lille, 059655 Villeneuve d'Ascq Cedex, France [1 ]
不详 [2 ]
机构
[1] Laboratoire Paul Painlevé (UMR CNRS 8524), UFR de Mathématiques, Université des Sciences et Technologies de Lille
[2] LAGIS (CNRS UMR 8146), Ecole Centrale de Lille, Cité Scientifique, 59651 Villeneuve d'Ascq Cedex
来源
Lect. Notes Control Inf. Sci. | 2006年 / 23-41期
关键词
D O I
10.1007/11612735_2
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:23 / 41
页数:18
相关论文
共 26 条
  • [1] Agarwal R.P., Lakshmikantham V., Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, Ser. Real Anal, 6, (1993)
  • [2] Bacciotti A., Rosier L., Liapunov Functions and Stability in Control Theory, (2005)
  • [3] Bhat S.P., Bernstein D., Continuous, bounded, finite-time stabilization of the translational and rotational double integrator, IEEE Conference on Control Applications, pp. 185-190, (1996)
  • [4] Bhat S.P., Bernstein D.S., Finite-time stability of homogeneous systems, Proceedinds of the American Control Conference, pp. 2513-2514, (1997)
  • [5] Bhat S.P., Bernstein D.S., Continuous finite-time stabilization of the translational and rotational double integrator, IEEE Trans. Automat. Control, 43, 5, pp. 678-682, (1998)
  • [6] Bhat S.P., Bernstein D.S., Finite time stability of continuous autonomous systems, SIAM J. Control Optim, 38, 3, pp. 751-766, (2000)
  • [7] Coron J.M., Praly L., Adding an integrator for the stabilization problem, Systems Control Lett, 17, pp. 89-104, (1991)
  • [8] Filippov A.F., Differential Equations with Discontinuous Righthand Sides, (1988)
  • [9] Floquet T., Barbot J.P., Perruquetti W., Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems, Automatica J. IFAC, 39, 6, pp. 1077-1083, (2003)
  • [10] Haimo V.T., Finite time controllers, SIAM J. Control Optim, 24, 4, pp. 760-770, (1986)