Robust estimation of water quality model parameters under random noise disturbance

被引:0
|
作者
Hunan University, Changsha 410082, China [1 ]
不详 [2 ]
机构
来源
Shuili Xuebao | 2006年 / 6卷 / 687-693期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Dobbins BOD-DO water quality model is applied to study the effect of random noise on parameter estimation by means of numerical simulation. The result shows that the least squares estimation of parameters is not robust in case of colored noises and high-level white noise involved. The random noises result in the estimated parameters drifted away from their true values. In order to overcome the disturbance of noises, a robust identification method of water quality model parameters namely trust region algorithm based on M-estimation is proposed. The calculation results indicate that the M-estimation has strong robustness and the true value of parameters can be reliably and robustly acquired either in condition of non-disturbed data or in case of noise involved. The comparison between two kinds of estimation methods shows that the trust region algorithm possesses high accuracy, excellent performance of noise resistance and strong robustness as well as uniform convergence, which are obviously better than the least squares estimation.
引用
收藏
相关论文
共 50 条
  • [41] Water quality model parameters estimation based on particle swarm optimization algorithm
    Xu, Wenyuan
    Liu, Binxiang
    Xu, Xing
    Hu, Na
    Hu, Hao
    Zhu, Ying
    PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-4, 2013, 610-613 : 1925 - +
  • [42] Robust Backstepping Control of a Quadrotor UAV Under Pink Noise and Sinusoidal Disturbance
    Karahan, Mehmet
    Kasnakoglu, Cosku
    Akay, Ahmet Nuri
    STUDIES IN INFORMATICS AND CONTROL, 2023, 32 (02): : 15 - 24
  • [43] ROBUST ESTIMATION OF THE SHIFT PARAMETER UNDER A BOUNDED NOISE VARIANCE
    VILCHEVSKII, NO
    SHEVLYAKOV, GP
    AUTOMATION AND REMOTE CONTROL, 1984, 45 (08) : 1048 - 1053
  • [44] Label noise detection under the noise at random model with ensemble filters
    Moura, Kecia G.
    Prudencio, Ricardo B. C.
    Cavalcanti, George D. C.
    INTELLIGENT DATA ANALYSIS, 2022, 26 (05) : 1119 - 1138
  • [45] Robust Joint Estimation of Multimicrophone Signal Model Parameters
    Koutrouvelis, Andreas, I
    Hendriks, Richard C.
    Heusdens, Richard
    Jensen, Jesper
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (07) : 1136 - 1150
  • [46] Spectral Reconstruction and Noise Model Estimation Based on a Masking Model for Noise Robust Speech Recognition
    Gonzalez, Jose A.
    Gomez, Angel M.
    Peinado, Antonio M.
    Ma, Ning
    Barker, Jon
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (09) : 3731 - 3760
  • [47] Spectral Reconstruction and Noise Model Estimation Based on a Masking Model for Noise Robust Speech Recognition
    Jose A. Gonzalez
    Angel M. Gómez
    Antonio M. Peinado
    Ning Ma
    Jon Barker
    Circuits, Systems, and Signal Processing, 2017, 36 : 3731 - 3760
  • [48] SLAM estimation method for uncertain model noise parameters
    Gao, Junchai
    Yan, Keding
    Han, Bing
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9425 - S9434
  • [49] SLAM estimation method for uncertain model noise parameters
    Junchai Gao
    Keding Yan
    Bing Han
    Cluster Computing, 2019, 22 : 9425 - 9434
  • [50] Output feedback robust model predictive control with unmeasurable model parameters and bounded disturbance
    Baocang Ding
    Hongguang Pan
    ChineseJournalofChemicalEngineering, 2016, 24 (10) : 1431 - 1441