Implementing augmented deep Machine learning for effective shallow water table management and forecasting

被引:0
|
作者
Zeynoddin, Mohammad [1 ]
Gumiere, Silvio Jose [1 ]
Bonakdari, Hossein [2 ]
机构
[1] Univ Laval, Dept Soils & Agrifood Engn, Quebec City, PQ, Canada
[2] Univ Ottawa, Dept Civil Engn, Ottawa, ON, Canada
关键词
LSTM; ELM; Holt Winters; Preprocessing; Hybrid Modeling; State Space; GROUNDWATER LEVEL; LINE-SEARCH; REGION; DEPTH; PREDICTION; REGRESSION; ALGORITHM; MODELS;
D O I
10.1016/j.jhydrol.2024.132371
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study addresses the gap in understanding and forecasting shallow water table depth (WTD), a critical factor in groundwater resource management and agricultural productivity. Despite the importance of accurately forecasting WTD for sustainable water resource management, current methods frequently struggle to capture the complexities and dynamics of WTD fluctuations. In response, this research, which was conducted in Que<acute accent>bec, Canada, leverages machine learning techniques-namely, extreme learning machines (ELMs) and long shortterm memory (LSTM) networks, augmented by the Holt-Winters (HW) state-space method-to develop a comprehensive analysis and forecasting approach for shallow WTD. The datasets were recorded by 8 sensors with hourly temporal resolutions from June to September, covering the growing season. The objective was to increase forecast accuracy by employing a detailed structural analysis of WTD time series data, selecting appropriate forecast steps, and fine-tuning model inputs through statistical tests and model-agnostic interpretation methods. The performance was evaluated via various metrics, including the correlation coefficient (R), root mean square error (RMSE), mean absolute relative error (MARE), and Theil's U accuracy and quality coefficients, across shortto long-term forecasts (1-, 12-, 24-, 48-, and 72-hour ahead). Integration of HW with the ELM and LSTM models markedly improved the forecasting capabilities, particularly for the LSTM model, which achieved high accuracy of R = 0.988 for 1-hour forecasts and low error rates (RMSE = 0.648 cm, MARE = 0.007, UI = 0.005, and UII = 0.010), although accuracy decreased for longer forecast horizons, resulting in the lowest accuracy for 72-hour forecasts, with R = 0.638, RMSE = 4.550 cm, MARE = 0.051, UI = 0.036, and UII = 0.071. Similarly, the ELM model showed promising results in short-term forecasts when coupled with HW (R = 0.988, RMSE = 0.676 cm, MARE = 0.007, UI = 0.005, and UII = 0.010) but experienced a decrease in performance accuracy over more extended forecast periods (R = 0.707, RMSE = 5.559 cm, MARE = 0.053, UI = 0.045, and UII = 0.089). Although the ELM model presented a negligible strong correlation in some forecast steps, the LSTM model offered consistently higher forecast accuracy and quality across all assessed horizons. The study demonstrates the superiority of the LSTM model in consistently providing more accurate forecasts, highlighting the importance of integrating HW to capture complex temporal patterns in hydrological forecasting. This advancement in forecasting WTD has substantial implications for enhancing groundwater resource management and agricultural decision-making, significantly contributing to sustainable water resource utilization and supporting agricultural productivity through informed data-driven practices.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Drought modelling and forecasting using shallow and deep machine learning techniques
    Alkubaisi, Hiba
    Mehr, Ali Danandeh
    Adarsh, S.
    Khan, Md Munir Hayet
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (01)
  • [2] A review of machine learning and deep learning applications in wave energy forecasting and WEC optimization
    Shadmani, Alireza
    Nikoo, Mohammad Reza
    Gandomi, Amir H.
    Wang, Ruo-Qian
    Golparvar, Behzad
    ENERGY STRATEGY REVIEWS, 2023, 49
  • [3] Machine learning in construction: From shallow to deep learning
    Xu, Yayin
    Zhou, Ying
    Sekula, Przemyslaw
    Ding, Lieyun
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2021, 6
  • [4] Forecasting of river water flow rate with machine learning
    Ilhan, Akin
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22) : 20341 - 20363
  • [5] Building thermal load prediction through shallow machine learning and deep learning
    Wang, Zhe
    Hong, Tianzhen
    Piette, Mary Ann
    APPLIED ENERGY, 2020, 263 (263)
  • [6] Load Forecasting with Machine Learning and Deep Learning Methods
    Cordeiro-Costas, Moises
    Villanueva, Daniel
    Eguia-Oller, Pablo
    Martinez-Comesana, Miguel
    Ramos, Sergio
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [7] Energy generation forecasting: elevating performance with machine and deep learning
    Mystakidis, Aristeidis
    Ntozi, Evangelia
    Afentoulis, Konstantinos
    Koukaras, Paraskevas
    Gkaidatzis, Paschalis
    Ioannidis, Dimosthenis
    Tjortjis, Christos
    Tzovaras, Dimitrios
    COMPUTING, 2023, 105 (08) : 1623 - 1645
  • [8] Forecasting the scheduling issues in engineering project management: Applications of deep learning models
    Sai, Liu
    Wenqi, Hao
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 123 (123): : 85 - 93
  • [9] Exploring machine learning algorithms for accurate water level forecasting in Muda river, Malaysia
    Zakaria, Muhamad Nur Adli
    Ahmed, Ali Najah
    Malek, Marlinda Abdul
    Birima, Ahmed H.
    Khan, Md Munir Hayet
    Sherif, Mohsen
    Elshafie, Ahmed
    HELIYON, 2023, 9 (07)
  • [10] Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning
    Percuku, Arber
    Minkovska, Daniela
    Hinov, Nikolay
    TECHNOLOGIES, 2025, 13 (02)