Interpolation of Imaging Mass Spectrometry Data by a Window-Based Adversarial Autoencoder Method

被引:0
|
作者
Xu, Lili [1 ]
Zhai, Qing [1 ]
Islam, Ariful [1 ,2 ]
Sakamoto, Takumi [1 ]
Zhang, Chi [1 ]
Aramaki, Shuhei [1 ,3 ,4 ]
Sato, Tomohito [1 ]
Yao, Ikuko [1 ,5 ]
Kahyo, Tomoaki [1 ,7 ]
Setou, Mitsutoshi [1 ,6 ]
机构
[1] Hamamatsu Univ Sch Med, Dept Cellular & Mol Anat, Hamamatsu, Shizuoka 4313192, Japan
[2] North South Univ, Sch Hlth & Life Sci, Dept Biochem & Microbiol, Dhaka 1229, Bangladesh
[3] Hamamatsu Univ Sch Med, Dept Radiat Oncol, Inst Photon Med, Hamamatsu, Shizuoka 4313192, Japan
[4] Hamamatsu Univ Sch Med, Inst Photon Med, Startup Support & URA Off, Hamamatsu, Shizuoka 4313192, Japan
[5] Kwansei Gakuin Univ, Sch Biol & Environm Sci, Dept Biomed Sci, Sanda, Hyogo 6691330, Japan
[6] Hamamatsu Univ Sch Med, Inst Photon Med, Int Mass Imaging & Spatial Omics Ctr, Hamamatsu, Shizuoka 4313192, Japan
[7] Hamamatsu Univ Sch Med, Int Mass Imaging & Spatial Omics Ctr, Div Res & Dev Photon Technol, Quantum Imaging Lab,Inst Photon Med, Hamamatsu, Shizuoka 4313192, Japan
关键词
Imaging mass spectrometry (IMS); Interpolation; Generative Artificial Intelligence; Animal tissue;
D O I
10.1021/jasms.4c00372
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Imaging mass spectrometry (IMS) is a technique for simultaneously acquiring the expression and distribution of molecules on the surface of a sample, and it plays a crucial role in spatial omics research. In IMS, the time cost and instrument load required for large data sets must be considered, as IMS typically involves tens of thousands of pixels or more. In this study, we developed a high-resolution method for IMS data reconstruction using a window-based Adversarial Autoencoder (AAE) method. We acquired IMS data from partial cerebellum regions of mice with a pitch size of 75 mu m and then down-sampled the data to a pitch size of 150 mu m, selecting 22 m/z peak intensity values per pixel. We established an AAE model to generate three pixels from the surrounding nine pixels within a window to reconstruct the image data at a pitch size of 75 mu m. Compared with two alternative interpolation methods, Bilinear and Bicubic interpolation, our window-based AAE model demonstrated superior performance on image evaluation metrics for the validation data sets. A similar model was constructed for larger mouse kidney tissues, where the AAE model achieved high image evaluation metrics. Our method is expected to be valuable for IMS measurements of large animal organs across extensive areas.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 50 条
  • [41] A dynamic window-based Euler depth estimation algorithm for potential field geophysical data
    Ghanbarifar, S.
    Hosseini, S. H.
    Abedi, M.
    Afshar, A.
    BULLETIN OF GEOPHYSICS AND OCEANOGRAPHY, 2024, 65 (03): : 399 - 438
  • [42] Parallel Patterns for Window-Based Stateful Operators on Data Streams: An Algorithmic Skeleton Approach
    De Matteis, Tiziano
    Mencagli, Gabriele
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2017, 45 (02) : 382 - 401
  • [43] A Sliding Window-Based Approach for Mining Frequent Weighted Patterns Over Data Streams
    Bui, Huong
    Nguyen-Hoang, Tu-Anh
    Vo, Bay
    Nguyen, Ham
    Le, Tuong
    IEEE ACCESS, 2021, 9 : 56318 - 56329
  • [44] Multivariate analysis of imaging mass spectrometry data
    Muir, E. R.
    Ndiour, I. J.
    Le Goasduff, N. A.
    Moffitt, R. A.
    Liu, Y.
    Sullards, M. C.
    Merrill, A. H., Jr.
    Chen, Y.
    Wang, M. D.
    PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 472 - +
  • [45] A public repository for mass spectrometry imaging data
    Roempp, Andreas
    Wang, Rui
    Albar, Juan Pablo
    Urbani, Andrea
    Hermjakob, Henning
    Spengler, Bernhard
    Vizcano, Juan Antonio
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (08) : 2027 - 2033
  • [46] Determining relevant training data for effort estimation using Window-based COCOMO calibration
    Vu Nguyen
    Boehm, Barry
    Huang, LiGuo
    JOURNAL OF SYSTEMS AND SOFTWARE, 2019, 147 : 124 - 146
  • [47] A public repository for mass spectrometry imaging data
    Andreas Römpp
    Rui Wang
    Juan Pablo Albar
    Andrea Urbani
    Henning Hermjakob
    Bernhard Spengler
    Juan Antonio Vizcaíno
    Analytical and Bioanalytical Chemistry, 2015, 407 : 2027 - 2033
  • [48] New software for imaging mass spectrometry data
    Matsuura, Masaaki
    Ushijima, Masaru
    Yuba-Kubo, Akiko
    Wakui, Masatoshi
    Ohmura, Mitsuyo
    Hosaka, Kurando
    Hayasaka, Takahiro
    Masaki, Noritaka
    Miyata, Satoshi
    Yao, Ikuko
    Setou, Mitsutoshi
    Ogawa, Kiyoshi
    Kajihara, Shigeki
    CANCER RESEARCH, 2012, 72
  • [49] Hyperspectral Visualization of Mass Spectrometry Imaging Data
    Fonville, Judith M.
    Carter, Claire L.
    Pizarro, Luis
    Steven, Rory T.
    Palmer, Andrew D.
    Griffiths, Rian L.
    Lalor, Patricia F.
    Lindon, John C.
    Nicholson, Jeremy K.
    Holmes, Elaine
    Bunch, Josephine
    ANALYTICAL CHEMISTRY, 2013, 85 (03) : 1415 - 1423
  • [50] Parallel Patterns for Window-Based Stateful Operators on Data Streams: An Algorithmic Skeleton Approach
    Tiziano De Matteis
    Gabriele Mencagli
    International Journal of Parallel Programming, 2017, 45 : 382 - 401