Maximizing methane and hydrogen delivery capacity by carbon and boron nitride nanoscrolls

被引:0
作者
Peng, Xuan [1 ]
机构
[1] Nanoworld Discovery Studio, Apex, NC 27523 USA
关键词
Adsorption; Delivery; Molecular simulation; Methane; Hydrogen; Nanoscrolls; METAL-ORGANIC FRAMEWORKS; SINGLE-WALLED CARBON; STORAGE; SIMULATION; SEPARATION; ADSORPTION; CO2;
D O I
10.1016/j.ijhydene.2024.11.138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The CH4 and H2 delivery capacity of carbon and boron nitride (BN) nanoscrolls was investigated, with a focus on optimizing the interlayer and van der Waals spacings to meet the U.S. Department of Energy (DOE) targets. Through computational simulations, the effects of interlayer spacing on CH4 and H2 adsorption were evaluated, revealing that while delivery quantities increase with interlayer spacing, achieving DOE targets remains a challenge for CH4. Notably, BN nanoscrolls exhibited higher adsorption capacities compared to carbon nanoscrolls, especially under low-pressure conditions. Conversely, carbon nanoscrolls displayed greater release quantities than BN nanoscrolls. For H2, delivery quantities met DOE targets at larger interlayer spacings, with carbon nanoscrolls requiring a spacing greater than 0.9 nm and BN nanoscrolls greater than 1.1 nm. For CH4 delivery, temperature optimization showed significant peaks in delivery for carbon nanoscrolls at 248 K. In contrast, BN nanoscrolls did not exhibit a peak in delivery. In carbon nanoscrolls, the optimal weight and volumetric capacities for methane delivery are 0.275 g/g and 182 cm3/cm3, respectively. Meanwhile, for hydrogen, the maximum delivery achieved is 8.26 wt% and 0.044 kg/L, which surpasses the DOE's storage target of 5.5 wt% and 0.04 kg/L. The study also highlighted the importance of structural parameter optimization, with a significant increase in weight delivery (>500%) and in volume delivery (>120%) for both gases.
引用
收藏
页码:497 / 509
页数:13
相关论文
共 38 条
[1]   Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1:: A comparative study from monte carlo simulation [J].
Babarao, Ravichandar ;
Hu, Zhongqiao ;
Jiang, Jianwen ;
Chempath, Shaji ;
Sandler, Stanley I. .
LANGMUIR, 2007, 23 (02) :659-666
[2]   Optimum conditions for adsorptive storage [J].
Bhatia, SK ;
Myers, AL .
LANGMUIR, 2006, 22 (04) :1688-1700
[3]   Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study [J].
Braga, S. F. ;
Coluci, V. R. ;
Baughman, R. H. ;
Galvao, D. S. .
CHEMICAL PHYSICS LETTERS, 2007, 441 (1-3) :78-82
[4]   Structure and dynamics of carbon nanoscrolls [J].
Braga, SF ;
Coluci, VR ;
Legoas, SB ;
Giro, R ;
Galvao, DS ;
Baughman, RH .
NANO LETTERS, 2004, 4 (05) :881-884
[5]   Shear induced formation of carbon and boron nitride nano-scrolls [J].
Chen, Xianjue ;
Boulos, Ramiz A. ;
Dobson, John F. ;
Raston, Colin L. .
NANOSCALE, 2013, 5 (02) :498-502
[6]   Structural and electronic study of nanoscrolls rolled up by a single graphene sheet [J].
Chen, Yu ;
Lu, Jing ;
Gao, Zhengxiang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (04) :1625-1630
[7]   Idealized Carbon-Based Materials Exhibiting Record Deliverable Capacities for Vehicular Methane Storage [J].
Collins, Sean P. ;
Perim, E. ;
Daff, Thomas D. ;
Skaf, Munir S. ;
Galvao, Douglas S. ;
Woo, Tom K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (02) :1050-1058
[8]   Prediction of the hydrogen storage capacity of carbon nanoscrolls [J].
Coluci, V. R. ;
Braga, S. F. ;
Baughman, R. H. ;
Galvao, D. S. .
PHYSICAL REVIEW B, 2007, 75 (12)
[9]  
Coluci VR, 2006, MRS Online Proc Libr, V885, P607, DOI [10.1557/PROC-0885-A06-07, DOI 10.1557/PROC-0885-A06-07]
[10]   Industrial applications of metal-organic frameworks [J].
Czaja, Alexander U. ;
Trukhan, Natalia ;
Mueller, Ulrich .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1284-1293