Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface

被引:32
作者
机构
[1] Bioengineering, California Institute of Technology, Pasadena, 91125, CA
[2] Computer Science, California Institute of Technology, Pasadena, 91125, CA
[3] Computation and Neural Systems, California Institute of Technology, Pasadena, 91125, CA
来源
Qian, Lulu (luluqian@caltech.edu) | 1600年 / Springer Verlag卷 / 8727期
基金
美国国家科学基金会;
关键词
D O I
10.1007/978-3-319-11295-4_8
中图分类号
学科分类号
摘要
We propose a theoretical framework that uses a novel DNA strand displacement mechanism to implement abstract chemical reaction networks (CRNs) on the surface of a DNA nanostructure, and show that surface CRNs can perform efficient algorithmic computation and create complex spatial dynamics. We argue that programming molecular behaviors with surface CRNs is systematic, parallel and scalable. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:114 / 131
页数:17
相关论文
共 48 条
  • [1] Beaver D., A universal molecular computer, DNA Based Computers, DIMACS, 27, pp. 29-36, (1996)
  • [2] Bennett C.H., The thermodynamics of computation-a review, International Journal of Theoretical Physics, 21, pp. 905-940, (1982)
  • [3] Bennett C.H., Logical reversibility of computation, IBM Journal of Research and Development, 17, pp. 525-532, (1973)
  • [4] Boon J.P., Dab D., Kapral R., Lawniczak A., Lattice gas automata for reactive systems, Physics Reports, 273, pp. 55-147, (1996)
  • [5] Chandran H., Gopalkrishnan N., Phillips A., Reif J., Localized hybridization circuits, DNA 17. LNCS, 6937, pp. 64-83, (2011)
  • [6] Chen X., Expanding the rule set of DNA circuitry with associative toehold activation, Journal of the American Chemical Society, 134, pp. 263-271, (2011)
  • [7] Chen Y.J., Dalchau N., Srinivas N., Phillips A., Cardelli L., Soloveichik D., Seelig G., Programmable chemical controllers made from DNA, Nature Nanotechnology, 8, pp. 755-762, (2013)
  • [8] Cook M., Universality in elementary cellular automata, Complex Systems, 15, pp. 1-40, (2004)
  • [9] Dabby N.L., Synthetic molecular machines for active self-assembly: prototype algorithms, designs, and experimental study, (2013)
  • [10] Dannenberg F., Kwiatkowska M., Thachuk C., Turberfield A.J., DNA walker circuits: Computational potential, design, and verification, DNA 2013. LNCS, 8141, pp. 31-45, (2013)