3D printed biodegradable hydrogel-based multichannel nerve conduits mimicking peripheral nerve fascicules

被引:0
|
作者
Maeng, Woo-Youl [1 ,2 ,3 ]
Lee, Yerim [1 ,4 ]
Chen, Szu-Han [5 ]
Kim, Kyung Su [1 ,4 ]
Sung, Daeun [1 ]
Tseng, Wan-Ling [5 ]
Kim, Gyu-Nam [1 ,4 ]
Koh, Young-Hag [1 ,4 ]
Hsueh, Yuan-Yu [5 ,6 ]
Koo, Jahyun [1 ,4 ]
机构
[1] Korea Univ, Sch Biomed Engn, Seoul 02841, South Korea
[2] Northwestern Univ, Querrey Simpson Inst Bioelect, Evanston, IL 60208 USA
[3] Northwestern Univ, Ctr Biointegrated Elect, Evanston, IL 60208 USA
[4] Korea Univ, Interdisciplinary Program Precis Publ Hlth, Seoul 02841, South Korea
[5] Natl Cheng Kung Univ, Coll Med, Div Plast & Reconstruct Surg, Dept Surg,Natl Cheng Kung Univ Hosp, Tainan 70456, Taiwan
[6] Natl Cheng Kung Univ, Coll Med, Dept Physiol, Tainan 701, Taiwan
基金
新加坡国家研究基金会;
关键词
Nerve guidance conduits; Peripheral nerve injury; Mimicking real nerve fascicles; VAT-Free DLP; In vivo animal studies; Food-grade dye; Peripheral nerve regeneration; REGENERATION; REPAIR; CELLS;
D O I
10.1016/j.mtbio.2025.101514
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Treating peripheral nerve injury (PNI) is a prevalent clinical challenge. The improper dispersion of regenerating axons makes it difficult to develop nerve guidance conduits (NGCs) for treating PNI. The multichannel NGCs, designed to mimic the fascicular structure of nerves, are proposed as an alternative to single hollow lumen NGCs. Hydrogel-based NGCs with microscale multichannels resembling actual nerve fascicles are fabricated using digital light processing as 3D printing. Gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (PEGDA), which are biodegradable and photocurable, are used as the printing solution. The addition of a foodgrade dye to the printing solution can prevent overcuring by adjusting the optical path length of light and regulating the polymerization rate. This work further demonstrates that the addition of dyes can enable highresolution printing, resulting in the achievement of fine multichannels with a diameter of 200 mu m. In vivo animal studies using a rat sciatic nerve gap model show that GelMA/PEGDA-based multichannel NGCs can significantly improve peripheral nerve regeneration, as indicated by improved paw sensory recoveries, increased hindlimb gait function, and muscle fiber regeneration. Furthermore, the mechanical properties, pore size, and biodegradation rate of the hydrogel constituting the NGCs successfully demonstrate the feasibility of hydrogelbased multichannel NGCs for accelerating neurologic recoveries.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] HYDROGEL-BASED NANOFIBER NERVE GUIDANCE CONDUITS FOR PERIPHERAL NERVE REPAIR
    Mi, R.
    Lim, S.
    Mao, H-Q
    Hoeke, A.
    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2011, 16 : S87 - S88
  • [2] 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects
    Liu, Kai
    Yan, Lesan
    Li, Ruotao
    Song, Zhiming
    Ding, Jianxun
    Liu, Bin
    Chen, Xuesi
    ADVANCED SCIENCE, 2022, 9 (12)
  • [3] Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits
    Dixon, Angela R.
    Jariwala, Shailly H.
    Bilis, Zoe
    Loverde, Joseph R.
    Pasquina, Paul F.
    Alvarez, Luis M.
    BIOMATERIALS, 2018, 186 : 44 - 63
  • [4] 3D printed elastic hydrogel conduits with 7,8-dihydroxyflavone release for peripheral nerve repair
    Wu, Wenbi
    Dong, Yinchu
    Liu, Haofan
    Jiang, Xuebing
    Yang, Ling
    Luo, Jing
    Hu, Yu
    Gou, Maling
    MATERIALS TODAY BIO, 2023, 20
  • [5] Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair
    Vijayavenkataraman, Sanjairaj
    Zhang, Shuo
    Thaharah, Siti
    Sriram, Gopu
    Lu, Wen Feng
    Fuh, Jerry Ying Hsi
    POLYMERS, 2018, 10 (07)
  • [6] PERIPHERAL NERVE REGENERATION USING BIO 3D NERVE CONDUITS
    Ikeguchi, R.
    Aoyama, T.
    Ando, M.
    Yoshimoto, K.
    Sakamoto, D.
    Zhao, C.
    Miyazaki, Y.
    Torii, Y.
    Noguchi, T.
    Nishitani, K.
    Akieda, S.
    Ikeya, M.
    Nakayama, K.
    Matsuda, S.
    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2022, 27 : S5 - S5
  • [7] Perspectives on 3D Bioprinting of Peripheral Nerve Conduits
    Soman, Soja Saghar
    Vijayavenkataraman, Sanjairaj
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 16
  • [8] Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel
    Yoo, Jin
    Park, Ji Hun
    Kwon, Young Woo
    Chung, Justin J.
    Choi, In Cheul
    Nam, Jae Joon
    Lee, Hyun Su
    Jeon, Eun Young
    Lee, Kangwon
    Kim, Soo Hyun
    Jung, Youngmee
    Park, Jong Woong
    BIOMATERIALS SCIENCE, 2020, 8 (22) : 6261 - 6271
  • [9] 3D-Printed Nerve Conduits with Live Platelets for Effective Peripheral Nerve Repair
    Tao, Jie
    Liu, Haofan
    Wu, Wenbi
    Zhang, Jiumeng
    Liu, Sijia
    Zhang, Jing
    Huang, Yulan
    Xu, Xin
    He, Hongchen
    Yang, Siming
    Gou, Maling
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (42)
  • [10] Nerve transfer with 3D-printed branch nerve conduits
    Zhang, Jing
    Tao, Jie
    Cheng, Hao
    Liu, Haofan
    Wu, Wenbi
    Dong, Yinchu
    Liu, Xuesong
    Gou, Maling
    Yang, Siming
    Xu, Jianguo
    BURNS & TRAUMA, 2022, 10