Calibration of reference light power in Brillouin optical time domain reflectometer

被引:0
|
作者
Wang J. [1 ]
Lu Y. [1 ]
Zhang X. [1 ]
Wang F. [1 ]
机构
[1] Institute of Optical Communication Engineering, Nanjing University, Nanjing
来源
关键词
Brillouin optical time domain reflectometer; Electro-optic modulation; Optic-fiber sensing; Optical feedback; Reference light calibration;
D O I
10.3788/CJL20103706.1456
中图分类号
学科分类号
摘要
A novel and simple reference light power calibration method is proposed, which has the advantage of frequency discriminator. The difference between light power of the total output of electro-optic modulator and the intended reference light power is detected at each frequency point, and then used as the feedback signal to control the output power of microwave source to calibrate the reference light power. The feasibility of the method is analyzed theoretically and verified through simulations and experiments. It is demonstrated that, after the calibration, the maximum error between the reference light power and intended power is reduced to one-third of that observed before calibration.
引用
收藏
页码:1456 / 1461
页数:5
相关论文
共 13 条
  • [1] Horiguchi T., Shimizu K., Kurashima T., Et al., Development of a distributed sensing technique using Brillouin scattering, J. Lightwave Technol., 13, 7, pp. 1296-1302, (1995)
  • [2] Song M., Zhuang B., Polarization-induced fading elimination technique in Brillouin optical time-domain analysis sensor, Acta Optica Sinica, 27, 4, pp. 711-715, (2007)
  • [3] Xiao H., Li F., Wang Y., Et al., High-resolution fiber laser sensor system, Chinese J. Lasers, 35, 1, pp. 87-91, (2008)
  • [4] Wang F., Zhang X., Lu Y., Et al., Improvement of spatial resolution for strain measurement with Brillouin optical time-domain reflectometer by fitting method based on equivalent optical pulse, Acta Optica Sinica, 28, 1, pp. 43-49, (2008)
  • [5] Maughan S.M., Kee H.H., Newson T.P., Newson. Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter, Meas. Sci. Technol., 12, 7, pp. 834-842, (2001)
  • [6] Parker T.R., Farhadiroushan M., Handerek V.A., Et al., A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter, IEEE Photon. Technol. Lett., 9, 7, pp. 979-981, (1997)
  • [7] Song M., Zhao B., Zhang X., Brillouin optical time domain analysis distributed optic-fiber sensor based on microwave electro-optic modulation, Acta Optica Sinica, 25, 8, pp. 1053-1056, (2005)
  • [8] Song M., Chen X., Real-time wavelet transform based coherent detecting Brillouin optical time domain reflectometer, Acta Optica Sinica, 29, 10, pp. 2818-2821, (2009)
  • [9] Kawno K., Kitoh T., Jamonji H., Et al., New traveling-wave electrode Mach-Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving-voltage at 1.52 wavelength, Electron. Lett., 25, 20, pp. 1382-1383, (1989)
  • [10] Dolfi D.W., Nazarathy M., Jungerman R.L., 40 GHz electro-optic modulator with 7.5 V drive voltage, Electron. Lett., 24, 9, pp. 528-529, (1988)