Lightweight remote sensing super-resolution with multi-scale graph attention network

被引:1
|
作者
Wang, Yu [1 ]
Shao, Zhenfeng [1 ]
Lu, Tao [2 ]
Huang, Xiao [3 ]
Wang, Jiaming [2 ]
Zhang, Zhizheng [1 ]
Zuo, Xiaolong [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[2] Wuhan Inst Technol, Sch Comp Sci & Engn, Hubei Key Lab Intelligent Robot, Wuhan 430073, Peoples R China
[3] Emory Univ, Dept Environm Sci, Atlanta, GA 30322 USA
基金
中国国家自然科学基金;
关键词
Remote sensing; Multi-scale network; Lightweight network; Super-resolution; Graph attention network; IMAGES; INFORMATION;
D O I
10.1016/j.patcog.2024.111178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remote Sensing Super-Resolution (RS-SR) constitutes a pivotal component in the domain of remote sensing image analysis, aimed at enhancing the spatial resolution of low-resolution imagery. Recent advancements have seen deep learning techniques achieving substantial progress in the RS-SR field. Notably, Graph Neural Networks (GNNs) have emerged as a potent mechanism for processing remote sensing images, adept at elucidating the intricate inter-pixel relationships within images. Nevertheless, a prevalent limitation among existing GNN-based methodologies is their disregard for the high computational demands, which circumscribes their applicability in environments with limited computational resources. This paper introduces a streamlined RS-SR framework, leveraging a Multi-Scale Graph Attention Network (MSGAN), designed to effectively balance computational efficiency with high performance. The core of MSGAN is a novel multi-scale graph attention module, integrating graph attention block and multi-scale lattice block structures, engineered to comprehensively assimilate both localized and extensive spatial information in remote sensing images. This enhances the framework's overall efficacy and resilience in RS-SR tasks. Comparative experimental analyses demonstrate that MSGAN delivers competitive results against state-of-the-art methods while reducing parameter count and computational overhead, presenting a promising avenue for deployment in scenarios with limited computational resources.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Attention-enhanced multi-scale residual network for single image super-resolution
    Yubin Sun
    Jiongming Qin
    Xuliang Gao
    Shuiqin Chai
    Bin Chen
    Signal, Image and Video Processing, 2022, 16 : 1417 - 1424
  • [42] Lightweight Remote-Sensing Image Super-Resolution via Attention-Based Multilevel Feature Fusion Network
    Wang, Hongyuan
    Cheng, Shuli
    Li, Yongming
    Du, Anyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 15
  • [43] Attention-enhanced multi-scale residual network for single image super-resolution
    Sun, Yubin
    Qin, Jiongming
    Gao, Xuliang
    Chai, Shuiqin
    Chen, Bin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1417 - 1424
  • [44] Super-Resolution Network with Information Distillation and Multi-Scale Attention for Medical CT Image
    Zhao, Tianliu
    Hu, Lei
    Zhang, Yongmei
    Fang, Jianying
    SENSORS, 2021, 21 (20)
  • [45] Global sparse attention network for remote sensing image super-resolution
    Hu, Tao
    Chen, Zijie
    Wang, Mingyi
    Hou, Xintong
    Lu, Xiaoping
    Pan, Yuanyuan
    Li, Jianqing
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [46] An efficient multi-scale large asymmetric-kernel network for lightweight image super-resolution
    Fang, Jinsheng
    Lin, Hanjiang
    Zhao, Jianglong
    Zeng, Kun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (23)
  • [47] Remote Sensing Image Super-Resolution Using Second-Order Multi-Scale Networks
    Dong, Xiaoyu
    Wang, Longguang
    Sun, Xu
    Jia, Xiuping
    Gao, Lianru
    Zhang, Bing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3473 - 3485
  • [48] Lightweight adaptive enhanced attention network for image super-resolution
    Wang, Li
    Xu, Lizhong
    Shi, Jianqiang
    Shen, Jie
    Huang, Fengcheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6513 - 6537
  • [49] Lightweight adaptive enhanced attention network for image super-resolution
    Li Wang
    Lizhong Xu
    Jianqiang Shi
    Jie Shen
    Fengcheng Huang
    Multimedia Tools and Applications, 2022, 81 : 6513 - 6537
  • [50] End-to-End Super-Resolution for Remote-Sensing Images Using an Improved Multi-Scale Residual Network
    Huan, Hai
    Li, Pengcheng
    Zou, Nan
    Wang, Chao
    Xie, Yaqin
    Xie, Yong
    Xu, Dongdong
    REMOTE SENSING, 2021, 13 (04) : 1 - 28