Enhanced bifunctional visible-light-driven photocatalytic production of H2 and H2O2 enabled by Ag-ZnIn2S4/C-In2O3 S-scheme heterojunction

被引:0
|
作者
Lei, Tao [1 ,2 ]
Zhan, Xiaoqiang [2 ]
Yuan, Zihao [2 ]
Wang, Zhaoyuan [2 ]
Yang, Hongli [2 ]
Zhang, Dongdong [2 ]
Li, Ying [1 ]
Yang, Weiyou [2 ]
Lin, Genwen [1 ]
Hou, Huilin [2 ]
机构
[1] Shanghai Univ, Inst Mat, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Ningbo Univ Technol, Inst Micro Nano Mat & Devices, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MOF-derived; Bifunctional photocatalyst; Heterojunction; Doping; H; 2; evolution; O; production; HYDROGEN EVOLUTION; CHARGE-TRANSFER; H-2; EVOLUTION; PERFORMANCE; WATER; ARCHITECTURE; NANOSHEETS; JUNCTIONS;
D O I
10.1016/j.seppur.2024.130474
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Multifunctional photocatalysts are recognized as efficient solutions to complex energy and environmental challenges. In this study, we report the rationally-designed bifunctional photocatalysts of Ag-ZnIn2S4/C-In2O3 (AgZISCIO) with S-scheme heterojunction and defect engineering, for highly efficient production of both hydrogen and hydrogen peroxide production. The heterojunction is established by growing ZnIn2S4 (ZIS) nanosheets on MOF-derived C-doped In2O3 (CIO) nanorods, which favors the formation of built-in electric field, thus facilitating effective photogenerated charge separation. Moreover, by introducing Ag ions into ZIS lattice via a cation exchange reaction, abundant active sites would be created for inducing defects on the heterojunction surface, thereby enhancing the kinetics of oxidation-reduction processes. Under visible-light irradiation, the resultant AgZISCIO photocatalysts exhibit remarkable hydrogen and hydrogen peroxide production rates of 3.19 mmol center dot g- 1 center dot h- 1 and 2.42 mmol center dot g- 1 center dot h- 1, respectively, outperforming those of most In2O3-based photocatalysts reported recently. It is witnessed that the overall enhanced photocatalytic performance could be mainly attributed to the formed S-scheme heterojunction and defect creation for improved photogenerated charge separation and redox capabilities. This work underscores the importance of dual modulation of heterojunctions and defect engineering as an effective strategy for enhancing photocatalytic performance, providing some valuable insights for developing advanced multifunctional photocatalysts.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Insight into bay-/end-substituted perylene diimide and its S-scheme heterojunction for enhanced photocatalytic H2O2 production under visible-light irradiation
    Zhang, Bo
    Li, Kang
    Li, Renfu
    Wang, Shoufeng
    Kang, Longtian
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 206 : 257 - 268
  • [42] Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution
    Wang, Zhaoyu
    Su, Bo
    Xu, Junli
    Hou, Yidong
    Ding, Zhengxin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (07) : 4113 - 4121
  • [43] Fabrication of S-scheme FeCoS2/Red phosphorus heterojunction for efficient photocatalytic H2 evolution
    Zhao, Fangli
    Miao, Hui
    Fan, Jun
    Sun, Tao
    Tang, Chunni
    Liu, Enzhou
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 676
  • [44] Highly efficient visible-light-driven water splitting for H2 evolution and degradation of ECs using CdS/ZnIn2S4 S-scheme heterojunction with built-in electric field
    Ji, Mengxue
    Wen, Jian
    Xu, Qiuyue
    Wu, Guanghui
    Chen, Pinghua
    Li, Xibao
    Jiang, Hualin
    Luo, Xubiao
    FUEL, 2024, 374
  • [45] Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and degradation of ciprofloxacin
    Zhu, Yuxin
    Cui, Yanjuan
    Xiao, Beibei
    Ou-yang, Jie
    Li, Hongping
    Chen, Ziran
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 129
  • [46] Novel organic/inorganic PDI-Urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production
    Wang, Weiwei
    Li, Xibao
    Deng, Fang
    Liu, Jiyou
    Gao, Xiaoming
    Huang, Juntong
    Xu, Jilin
    Feng, Zhijun
    Chen, Zhi
    Han, Lu
    CHINESE CHEMICAL LETTERS, 2022, 33 (12) : 5200 - 5207
  • [47] Fabrication of the SnS2/ZnIn2S4 heterojunction for highly efficient visible light photocatalytic H2 evolution
    Geng, Yanling
    Zou, Xiaoli
    Lu, Yanan
    Wang, Lei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (22) : 11520 - 11527
  • [48] S-scheme heterojunction of CuBi2O4 supported Na doped P25 for enhanced photocatalytic H2 evolution
    Mao, Jian-Xiang
    Wang, Ji-Chao
    Gao, Huiling
    Shi, Weina
    Jiang, Hai-Peng
    Hou, Yuxia
    Li, Renlong
    Zhang, Wanqing
    Liu, Lu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (13) : 8214 - 8223
  • [49] Assembling Ti3C2 MXene into ZnIn2S4-NiSe2 S-scheme heterojunction with multiple charge transfer channels for accelerated photocatalytic H2 generation
    Bai, Junxian
    Chen, Weilin
    Hao, Lei
    Shen, Rongchen
    Zhang, Peng
    Li, Neng
    Li, Xin
    CHEMICAL ENGINEERING JOURNAL, 2022, 447
  • [50] Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism
    Ma, Yunhao
    Wang, Shan
    Zhang, Yingjie
    Cheng, Bei
    Zhang, Liuyang
    JOURNAL OF MATERIOMICS, 2025, 11 (03)