Microporous pentiptycene-based polybenzimidazole membranes for high temperature H2/CO2 separation

被引:0
|
作者
Liu, Mengdi [1 ]
Emery, Joseph [1 ]
Guo, Ruilan [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
关键词
GAS PERMEATION; POLYMERIC MEMBRANES; POLYIMIDE MEMBRANES; HYDROGEN; CO2; TRANSPORT; SORPTION; PURIFICATION; CAPTURE; DESIGN;
D O I
10.1016/j.memsci.2024.123673
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Separating H2 from syngas at elevated temperatures (100-250 degrees C) have attracted significant attention in recent years as a means to reduce energy consumption and capital costs in precombustion carbon capture processes, such as those following steam reforming of natural gas or coal gasification. Polybenzimidazole (PBI), particularly m-PBI, has been reported as a leading membrane material for high-temperature H2/CO2 separation. However, m-PBI exhibits extremely low H2 permeability, even at high temperatures, which limits its productivity in H2/CO2 separation applications. To address this limitation, this work introduces a new pentiptycene-based polybenzimidazole (PPBI) featuring significantly enhanced H2 permeability and attractive high-temperature H2/CO2 separation performance, which stems from the unique configurational free volume elements introduced by pentiptycene moieties. Further tuning of the free volume architecture of PPBI films is achieved via acid doping with phosphoric acid (PA) or trans-aconitic acid (TaA), which introduces crosslinking among PPBI chains. Under mixed-gas environment (50/50 mol% H2/CO2) at 180 degrees C, the acid-doped PPBI films exhibit a-230 % increase in H2/CO2 selectivity compared to pristine PPBI film while maintaining high H2 permeability that is nearly 500 % of m-PBI. These properties approach the predicted upper bound for membrane operating at 180 degrees C, highlighting its great potential for high-temperature H2/CO2 separation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Preparation of high performance ZSM-5 zeolite membranes for CO2/H2 separation
    Mirfendereski, Seyed Mojtaba
    Mazaheri, Tayebeh
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 94 : 240 - 252
  • [22] Amine-Containing Membranes with Functionalized Multi-Walled Carbon Nanotubes for CO2/H2 Separation
    Yang, Yutong
    Han, Yang
    Pang, Ruizhi
    Ho, W. S. Winston
    MEMBRANES, 2020, 10 (11) : 1 - 15
  • [23] The influence of cations intercalated in graphene oxide membranes in tuning H2/CO2 separation performance
    Chuah, Chong Yang
    Nie, Lina
    Lee, Jong-Min
    Bae, Tae-Hyun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 246
  • [24] Oxidatively stable membranes for CO2 separation and H2 purification
    Vakharia, Varun
    Salim, Witopo
    Gasda, Michael
    Ho, W. S. Winston
    JOURNAL OF MEMBRANE SCIENCE, 2017, 533 : 220 - 228
  • [25] Tetraphenyladamantane-based microporous polyaminals for efficient adsorption of CO2, H2 and organic vapors
    Rong, Meng
    Yang, Liangrong
    Yang, Chao
    Yu, Jiemiao
    Liu, Huizhou
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 323 (323)
  • [26] H2/CO2 Gas Separation Characteristic of Zeolite Membrane at High Temperature
    Kwon, Woo Teck
    Kim, Soo-Ryong
    Kim, Eun Bi
    Bae, Seong-Youl
    Kim, Younghee
    ADVANCED MATERIALS AND PROCESSING, 2007, 26-28 : 267 - +
  • [27] Hydrothermally stable Zr-doped organosilica membranes for H2/CO2 separation
    Song, Huating
    Zhao, Shuaifei
    Chen, Jiawei
    Qi, Hong
    MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 224 : 277 - 284
  • [28] Surface modification of polyimide membranes by diamines for H2 and CO2 separation
    Chung, Tai-Shung
    Shao, Lu
    Tin, Pei Shi
    MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (13) : 998 - 1003
  • [29] High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture
    Avci, Gokay
    Velioglu, Sadiye
    Keskin, Seda
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (39) : 33693 - 33706
  • [30] Self-crosslinked MXene hollow fiber membranes for H2/CO2 separation
    Qu, Kai
    Dai, Liheng
    Xia, Yongsheng
    Wang, Yixing
    Zhang, Dezhu
    Wu, Yulin
    Yao, Zhizhen
    Huang, Kang
    Guo, Xuhong
    Xu, Zhi
    JOURNAL OF MEMBRANE SCIENCE, 2021, 638