GCP-YOLO: a lightweight underwater object detection model based on YOLOv7

被引:2
|
作者
Gao, Yu [1 ]
Li, Zhanying [1 ]
Zhang, Kangye [1 ]
Kong, Lingyan [1 ]
机构
[1] Dalian Polytech Univ, Sch Informat Sci & Engn, Dalian 116034, Peoples R China
关键词
YOLOv7; Underwater object detection; Prune; CA;
D O I
10.1007/s11554-024-01586-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid development of technology, underwater biological detection tasks are generally conducted using mobile devices. This paper proposes the GCP-YOLO model based on YOLOv7 to address the challenges of deploying large detection models on mobile devices in the field of underwater object detection, particularly the issues of difficulty in underwater object detection and resource constraints. First, the GhostNetV2 module is used to make the ELAN module lightweight in the Neck part, reducing the model's parameter count and computational complexity. Second, to address potential issues such as feature loss and low accuracy when collecting feature information in the lightweight network, we incorporate the CA Attention module after the improved ELAN module to prevent feature loss caused by the lightweighting process. Finally, we perform pruning on the overall improved model with a pruning rate of 50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, further reducing the model's parameter count and computational complexity. Compared to the YOLOv7 model, the GCP-YOLO underwater object detection model reduces the parameter count and computational complexity by a factor of 4, while improving accuracy by 2.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A lightweight road crack detection algorithm based on improved YOLOv7 model
    He, Junjie
    Wang, Yanchao
    Wang, Yiting
    Li, Run
    Zhang, Dawei
    Zheng, Zhonglong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 847 - 860
  • [22] Steel surface defect detection based on lightweight YOLOv7
    Shi, Tao
    Wu, Rongxin
    Zhu, Wenxu
    Ma, Qingliang
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 306 - 313
  • [23] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303
  • [24] Steel surface defect detection based on lightweight YOLOv7
    SHI Tao
    WU Rongxin
    ZHU Wenxu
    MA Qingliang
    Optoelectronics Letters, 2025, 21 (05) : 306 - 313
  • [25] Object Detection with YOLOv7 Model on Smart Mobile Devices
    Karadag, Batuhan
    Ari, Ali
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2023, 26 (03): : 1207 - 1214
  • [26] Small object detection model for UAV aerial image based on YOLOv7
    Jinguang Chen
    Ronghui Wen
    Lili Ma
    Signal, Image and Video Processing, 2024, 18 : 2695 - 2707
  • [27] Small object detection model for UAV aerial image based on YOLOv7
    Chen, Jinguang
    Wen, Ronghui
    Ma, Lili
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2695 - 2707
  • [28] Mcan-YOLO: An Improved Forest Fire and Smoke Detection Model Based on YOLOv7
    Liu, Hongying
    Zhu, Jun
    Xu, Yiqing
    Xie, Ling
    FORESTS, 2024, 15 (10):
  • [29] YOLOv7-SN: Underwater Target Detection Algorithm Based on Improved YOLOv7
    Zhao, Ming
    Zhou, Huibo
    Li, Xue
    SYMMETRY-BASEL, 2024, 16 (05):
  • [30] YOLO-FNC: An Improved Method for Small Object Detection in Remote Sensing Images Based on YOLOv7
    Dang, Lanxue
    Liu, Gang
    Hou, Yan-e
    Han, Hongyu
    IAENG International Journal of Computer Science, 2024, 51 (09) : 1281 - 1290