Unveiling reaction mechanisms of non-aqueous aprotic Zn-ion batteries - Zn/LiFePO4 system

被引:0
作者
Chinnakutti, Karthik kumar [1 ]
Sinthong, Sasisiri [1 ]
Gao, Hongyi [2 ]
Tapia-Ruiz, Nuria [3 ]
Kidkhunthod, Pinit [4 ]
Kasemchainan, Jitti [1 ,5 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Chem Technol, Bangkok 10330, Thailand
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Sch Mat Sci & Engn, Beijing Key Lab Funct Mat Mol & Struct Construct, Beijing 100083, Peoples R China
[3] Imperial Coll London, Dept Chem, Mol Sci Res Hub, White City Campus, London W12 0BZ, England
[4] Synchrotron Light Res Inst Publ Org, Nakhon Ratchasima 30000, Thailand
[5] Chulalongkorn Univ, Fac Sci, Ctr Excellence Adv Mat Energy Storage, Bangkok 10330, Thailand
关键词
Non-Aqueous electrolyte; Zn-ion batteries; High-temperature applications; TEGDME; LiFePO4; RECHARGEABLE LITHIUM BATTERY; ELECTRICAL ENERGY-STORAGE; POLYMER ELECTROLYTE; LIFEPO4; CHALLENGES; CATHODE; BEHAVIOR; LIQUID;
D O I
10.1016/j.jallcom.2024.177279
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zinc-ion batteries (ZIBs) have recently gained significant attention as a supplementary option to lithium-ion batteries with the frequent use of MnO2 as the positive active material and aqueous solution as the electrolyte. Exploration of a non-aqueous electrolyte of Zn(OTf)(2) - LiCl in tetraethylene glycol dimethyl ether (TEGDME) and a positive active material of lithium iron phosphate (LiFePO4 or LFP) to be into ZIBs is proposed alternatively. TEGDME, also known as tetraglyme, is better than water because it has a high boiling point (> 250 degrees C at the ambient condition). This implies that ZIBs can be used in high-temperature applications, especially for large-scale energy storage with solar panels. The experimental findings indicate that the electrolyte exhibited enhanced the cycleability, demonstrating a capacity of LFP about 118.8 mAh g(-1) when subjected to a current density of 10 mA g(-1). Furthermore, we measured the specific capacity of the LFP to be 108.15 mAh g(-1) after undergoing 100 cycles. We examined the working mechanism of a LFP/Zn battery in details using XANES and XRD and found that Li+ is only extracted from/inserted into the cathode during cycling. The findings indicate that the utilization of this non-aqueous high-boiling-point electrolyte has the potential to enhance electrochemical properties, simultaneously prolonging capacity retention.
引用
收藏
页数:9
相关论文
共 32 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[3]   Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material [J].
Chae, Munseok S. ;
Heo, Jongwook W. ;
Kwak, Hunho H. ;
Lee, Hochun ;
Hong, Seung-Tae .
JOURNAL OF POWER SOURCES, 2017, 337 :204-211
[4]   X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell [J].
Deb, A ;
Bergmann, U ;
Cairns, EJ ;
Cramer, SP .
JOURNAL OF SYNCHROTRON RADIATION, 2004, 11 :497-504
[5]   Mixed ionic liquid as electrolyte for lithium batteries [J].
Diaw, A ;
Chagnes, A ;
Carré, B ;
Willmann, P ;
Lemordant, D .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :682-684
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[8]   Effect of Tetraethylene Glycol Dimethyl Ether on Electrical, Structural and Thermal Properties of PVA-Based Polymer Electrolyte for Magnesium Battery [J].
Gamal, R. ;
Sheha, E. ;
Shash, N. ;
El-Shaarawy, M. G. .
ACTA PHYSICA POLONICA A, 2015, 127 (03) :803-810
[9]   Dynamic Lithium Intercalation/Deintercalation in 18650 Lithium Ion Battery by Time-Resolved High Energy Synchrotron X-Ray Diffraction [J].
He, Hao ;
Liu, Bo ;
Abouimrane, Ali ;
Ren, Yang ;
Liu, Yuzi ;
Liu, Qi ;
Chao, Zi-Sheng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :A2195-A2200
[10]   Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density [J].
Hou, Yuyang ;
Wang, Xujiong ;
Zhu, Yusong ;
Hu, Chenglin ;
Chang, Zheng ;
Wu, Yuping ;
Holze, Rudolf .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (46) :14713-14718