Unveiling reaction mechanisms of non-aqueous aprotic Zn-ion batteries - Zn/LiFePO4 system

被引:0
|
作者
Chinnakutti, Karthik kumar [1 ]
Sinthong, Sasisiri [1 ]
Gao, Hongyi [2 ]
Tapia-Ruiz, Nuria [3 ]
Kidkhunthod, Pinit [4 ]
Kasemchainan, Jitti [1 ,5 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Chem Technol, Bangkok 10330, Thailand
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Sch Mat Sci & Engn, Beijing Key Lab Funct Mat Mol & Struct Construct, Beijing 100083, Peoples R China
[3] Imperial Coll London, Dept Chem, Mol Sci Res Hub, White City Campus, London W12 0BZ, England
[4] Synchrotron Light Res Inst Publ Org, Nakhon Ratchasima 30000, Thailand
[5] Chulalongkorn Univ, Fac Sci, Ctr Excellence Adv Mat Energy Storage, Bangkok 10330, Thailand
关键词
Non-Aqueous electrolyte; Zn-ion batteries; High-temperature applications; TEGDME; LiFePO4; RECHARGEABLE LITHIUM BATTERY; ELECTRICAL ENERGY-STORAGE; POLYMER ELECTROLYTE; LIFEPO4; CHALLENGES; CATHODE; BEHAVIOR; LIQUID;
D O I
10.1016/j.jallcom.2024.177279
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zinc-ion batteries (ZIBs) have recently gained significant attention as a supplementary option to lithium-ion batteries with the frequent use of MnO2 as the positive active material and aqueous solution as the electrolyte. Exploration of a non-aqueous electrolyte of Zn(OTf)(2) - LiCl in tetraethylene glycol dimethyl ether (TEGDME) and a positive active material of lithium iron phosphate (LiFePO4 or LFP) to be into ZIBs is proposed alternatively. TEGDME, also known as tetraglyme, is better than water because it has a high boiling point (> 250 degrees C at the ambient condition). This implies that ZIBs can be used in high-temperature applications, especially for large-scale energy storage with solar panels. The experimental findings indicate that the electrolyte exhibited enhanced the cycleability, demonstrating a capacity of LFP about 118.8 mAh g(-1) when subjected to a current density of 10 mA g(-1). Furthermore, we measured the specific capacity of the LFP to be 108.15 mAh g(-1) after undergoing 100 cycles. We examined the working mechanism of a LFP/Zn battery in details using XANES and XRD and found that Li+ is only extracted from/inserted into the cathode during cycling. The findings indicate that the utilization of this non-aqueous high-boiling-point electrolyte has the potential to enhance electrochemical properties, simultaneously prolonging capacity retention.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics
    Zuo, Shiyong
    Xu, Xijun
    Ji, Shaomin
    Wang, Zhuosen
    Liu, Zhengbo
    Liu, Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (03) : 830 - 860
  • [2] Engineering hosts for Zn anodes in aqueous Zn-ion batteries
    Zhu, Yunhai
    Liang, Guojin
    Cui, Xun
    Liu, Xueqin
    Zhong, Haixia
    Zhi, Chunyi
    Yang, Yingkui
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (02) : 369 - 385
  • [3] Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries
    Zhu, Chengyao
    Li, Pengzhou
    Xu, Guiying
    Cheng, Hui
    Gao, Guo
    COORDINATION CHEMISTRY REVIEWS, 2023, 485
  • [4] Issues and rational design of aqueous electrolyte for Zn-ion batteries
    Zhang, Qi
    Yang, Zefang
    Ji, Huimin
    Zeng, Xiaohui
    Tang, Yougen
    Sun, Dan
    Wang, Haiyan
    SUSMAT, 2021, 1 (03): : 432 - 447
  • [5] Mn-Fe Prussian blue analogue as low-cost robust cathode for non-aqueous Zn-ion batteries
    Yimtrakarn, Trakarn
    Liao, Yi-Chih
    Sanin, M. V. Ahmed
    Chen, Jeng-Lung
    Chuang, Yu-Chun
    Lerkkasemsan, Nuttapol
    Kaveevivitchai, Watchareeya
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [6] A new step in the development of Zn/LiFePO4 aqueous battery
    Molkenova, A.
    Belgibayeva, A.
    Ibrayeva, D.
    Sultanov, M.
    Zhumagali, S.
    Akhmetova, N.
    Hara, T.
    Bakenov, Z.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (03) : 4452 - 4457
  • [7] A High Capacity Bilayer Cathode for Aqueous Zn-Ion Batteries
    Zhu, Kaiyue
    Wu, Tao
    Huang, Kevin
    ACS NANO, 2019, 13 (12) : 14447 - 14458
  • [8] Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries
    Tang, Yongwei
    Li, Jin-Hong
    Xu, Chen-Liang
    Liu, Mengting
    Xiao, Bing
    Wang, Peng-Fei
    CARBON NEUTRALIZATION, 2023, 2 (02): : 186 - 212
  • [9] CuMnO2 nanosheets for high performance aqueous Zn-ion batteries
    Cheng, Cuixia
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [10] Non-Aqueous Zn-Ion Hybrid Supercapacitors: Acetonitrile vs Propylene Carbonate Based Electrolyte
    Poder, K. -s.
    Eskusson, J.
    Lust, E.
    Janes, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (06)