Challenges and opportunities in Machine learning for bioenergy crop yield Prediction: A review

被引:1
作者
Dayil, Joseph Lepnaan [1 ]
Akande, Olugbenga [2 ]
Mahmoud, Alaa El Din [3 ,4 ]
Kimera, Richard [1 ]
Omole, Olakunle [1 ]
机构
[1] Handong Global Univ, Dept Adv Convergence, 558 Handong Ro, Pohang 37554, South Korea
[2] Handong Global Univ, Dept Comp Sci & Elect Engn, 558 Handong Ro, Pohang 37554, South Korea
[3] Alexandria Univ, Fac Sci, Environm Sci Dept, Alexandria 21511, Egypt
[4] Alexandria Univ, Fac Sci, Green Technol Grp, Alexandria 21511, Egypt
关键词
Renewable Energy; Artificial Intelligence (AI); Machine Learning (ML); Crop Yield Prediction; Sustainable Energy; Random Forests; Neural Networks; Predictive Analytics; ARTIFICIAL NEURAL-NETWORKS; ECOSYSTEM SERVICES; MODELS; AGRICULTURE; LAND; REGRESSION; DESIGN; BIOGAS; CORN;
D O I
10.1016/j.seta.2024.104057
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bioenergy offers a sustainable alternative to fossil fuels, addressing energy security and climate change concerns. This paper reviews the current landscape of machine learning (ML) applications in predicting bioenergy crop yields. It explores the potential of ML models, such as random forests, support vector machines, and neural networks, to improve yield predictions by analyzing complex agricultural datasets, including soil quality, weather conditions, and crop characteristics. The review highlights the challenges of implementing ML in bioenergy systems, such as data limitations, model interpretability, and scalability. Key findings indicate that integrating ML with traditional agricultural practices can optimize resource allocation, enhance yield predictions, and promote more sustainable bioenergy production. The paper also discusses future research directions for improving ML techniques to advance bioenergy crop yield prediction and sustainability.
引用
收藏
页数:17
相关论文
共 212 条
[1]   Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms [J].
Abbas, Farhat ;
Afzaal, Hassan ;
Farooque, Aitazaz A. ;
Tang, Skylar .
AGRONOMY-BASEL, 2020, 10 (07)
[2]   A survey on data-efficient algorithms in big data era [J].
Adadi, Amina .
JOURNAL OF BIG DATA, 2021, 8 (01)
[3]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[4]   Machine Learning-Based Predictive Farmland Optimization and Crop Monitoring System [J].
Adebiyi, Marion Olubunmi ;
Ogundokun, Roseline Oluwaseun ;
Abokhai, Aneoghena Amarachi .
SCIENTIFICA, 2020, 2020
[5]   Machine Learning Model for the Evaluation of Biomethane Potential Based on the Biochemical Composition of Biomass [J].
Adeleke, Adekunle A. ;
Okolie, Jude A. ;
Ogbaga, Chukwuma C. ;
Ikubanni, Peter P. ;
Okoye, Patrick U. ;
Akande, Olugbenga .
BIOENERGY RESEARCH, 2024, 17 (01) :731-743
[6]   Potential Breeding Strategies for Improving Salt Tolerance in Crop Plants [J].
Afzal, Muhammad ;
Hindawi, Salah El Sayed ;
Alghamdi, Salem Safer ;
Migdadi, Hussein H. ;
Khan, Muhammad Altaf ;
Hasnain, Muhammad Usama ;
Arslan, Muhammad ;
Habib Ur Rahman, Muhammad ;
Sohaib, Muhammad .
JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (06) :3365-3387
[7]  
Ahmad A, 2021, IJATCSE, V10, P2241, DOI [10.30534/ijatcse/2021/1061032021, DOI 10.30534/IJATCSE/2021/1061032021]
[8]   Prediction of Potato Crop Yield Using Precision Agriculture Techniques [J].
Al-Gaadi, Khalid A. ;
Hassaballa, Abdalhaleem A. ;
Tola, ElKamil ;
Kayad, Ahmed G. ;
Madugundu, Rangaswamy ;
Alblewi, Bander ;
Assiri, Fahad .
PLOS ONE, 2016, 11 (09)
[9]   A Review of the Challenges of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities [J].
Alibabaei, Khadijeh ;
Gaspar, Pedro D. ;
Lima, Tania M. ;
Campos, Rebeca M. ;
Girao, Ines ;
Monteiro, Jorge ;
Lopes, Carlos M. .
REMOTE SENSING, 2022, 14 (03)
[10]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)