A NEW LEGENDRE POLYNOMIAL-BASED APPROACH FOR NON-AUTONOMOUS LINEAR ODES

被引:0
作者
Pozza S. [1 ]
van Buggenhout N. [2 ]
机构
[1] Department of Numerical Mathematics, Charles University, Sokolovská 83, Praha 8
[2] Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés
来源
Electronic Transactions on Numerical Analysis | 2024年 / 60卷
关键词
Legendre polynomials; ordinary differential equations; spectral accuracy;
D O I
10.1553/etna_vol60s292
中图分类号
学科分类号
摘要
We introduce a new method with spectral accuracy to solve linear non-autonomous ordinary differential equations (ODEs) of the kind dtd ũ(t) = f̃(t)ũ(t), ũ(−1) = 1, with f̃(t) an analytic function. The method is based on a new analytical expression for the solution ũ(t) given in terms of a convolution-like operation, the ?-product. We prove that, by representing this expression in a finite Legendre polynomial basis, the solution ũ(t) can be found by solving a matrix problem involving the Fourier coefficients of f̃(t). An efficient procedure is proposed to approximate the Legendre coefficients of ũ(t), and the truncation error and convergence are analyzed. We show the effectiveness of the proposed procedure through numerical experiments. Our approach allows for a generalization of the method to solve systems of linear ODEs. © 2024, Kent State University.
引用
收藏
页码:292 / 326
页数:34
相关论文
共 44 条
[1]  
AMODIO P., BRUGNANO L., IAVERNARO F., Analysis of spectral Hamiltonian boundary value methods (SHBVMs) for the numerical solution of ODE problems, Numer. Algorithms, 83, pp. 1489-1508, (2020)
[2]  
AURENTZ J. L., TREFETHEN L. N., Chopping a Chebyshev series, ACM Trans. Math. Software, 43, (2017)
[3]  
BENZI M., Localization in matrix computations: theory and applications, Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications, 2173, pp. 211-317, (2016)
[4]  
BENZI M., Some uses of the field of values in numerical analysis, Boll. Unione Mat. Ital, 14, pp. 159-177, (2021)
[5]  
BENZI M., BOITO P., Decay properties for functions of matrices over C<sup>∗</sup>-algebras, Linear Algebra Appl, 456, pp. 174-198, (2014)
[6]  
BONHOMME C., POZZA S., VAN BUGGENHOUT N., A new fast numerical method for the generalized Rosen-Zener model, (2023)
[7]  
BRUGNANO L., IAVERNARO F., Line Integral Methods for Conservative Problems, (2016)
[8]  
BRUGNANO L., IAVERNARO F., TRIGIANTE D., A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput, 218, pp. 8475-8485, (2012)
[9]  
BRUGNANO L., MONTIJANO J. I., RANDEZ L., On the effectiveness of spectral methods for the numerical solution of multi-frequency highly oscillatory Hamiltonian problems, Numer. Algorithms, 81, pp. 345-376, (2019)
[10]  
CASAS F., Sufficient conditions for the convergence of the Magnus expansion, J. Phys. A, 40, pp. 15001-15017, (2007)