共 178 条
- [91] Lu Z., Carneiro G., Bradley A.P., Automated nucleus and cytoplasm segmentation of overlapping cervical cells, Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention, 8149, pp. 452-460, (2013)
- [92] Arteta C., Lempitsky V., Noble J.A., Zisserman A., Learning to detect cells using non-overlapping extremal regions, Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention, 7510, pp. 348-356, (2012)
- [93] Kostelec P.D., Carliny L.M., Glocker B., Learning to detect and track cells for quantitative analysis of time-lapse microscopic image sequences, Proc. IEEE Int. Symp. Biomed. Imag, pp. 1544-1547, (2015)
- [94] Hough P.V.C., Methods and Means for Recognizing Complex Patterns, (1962)
- [95] Duda R.O., Hart P.E., Use of the Hough transformation to detect lines and curves in pictures, Commun. ACM, 15, 1, pp. 11-15, (1972)
- [96] Ballard D.H., Generalizing the Hough transform to detect arbitrary shapes, Pattern Recog., 13, 2, pp. 111-122, (1981)
- [97] Ramesh N., Salama M., Tasdizen T., Segmentation of haematopoeitic cells in bone marrow using circle detection and splitting techniques, Proc. IEEE Int. Symp. Biomed. Imag., May, pp. 206-209, (2012)
- [98] Zanella C., Campana M., Rizzi B., Melani C., Sanguinetti G., Bourgine P., Mikula K., Peyrieras N., Sarti A., Cells segmentation from 3-D confocal images of early zebrafish embryogenesis, IEEE Trans. Image Process., 19, 3, pp. 770-781, (2010)
- [99] Canny J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8, 6, pp. 679-698, (1986)
- [100] Lee K., Street W.N., An adaptive resource-allocating network for automated detection, segmentation, and classification of breast cancer nuclei topic area: Image processing and recognition, IEEE Trans.Neural Netw., 14, 3, pp. 680-687, (2003)