Low-temperature Cu-Cu direct bonding with ultra-large grains using highly (110)-oriented nanotwinned copper

被引:0
|
作者
Li, Huahan [1 ]
Liang, Zhaolan [1 ]
Ning, Zeyu [2 ]
Liu, Ziyu [2 ]
Li, Ming [1 ]
Wu, Yunwen [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
关键词
Cu-Cu direct bonding; Preferred orientation; Grain growth; Large grain; Electrodeposition; GROWTH; PARAMETERS; STRENGTH; SURFACE;
D O I
10.1016/j.matchar.2024.114455
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the application of Cu-Cu direct bonding technology in high-performance electronic devices, improving bonding reliability is essential for achieving high-density 3D IC integration. In this study, we innovatively applied highly (110)-oriented perpendicular nanotwinned Cu (p-ntCu) to achieve Cu-Cu direct bonding at low temperature and pressure. The anisotropic growth of p-ntCu during annealing at 200 degrees C resulted in the formation of ultra-large grains, which could improve the conductivity of the electrodeposited Cu film. Two Cu films were bonded at 200-250 degrees C with 2 MPa pressure for 1 h, and there was almost no void at the bonding interface. Anisotropic grain growth occurred within the bonding joint and grain boundary migration was observed at the bonding interface. The shear strength after bonding at 250 degrees C was measured as 58.3 MPa on average, indicating a relatively high quality of such Cu-Cu bonding. The p-ntCu can achieve Cu-Cu bonding and improve the conductivity by anisotropic grain growth at low temperature and pressure, which has great potential for Cu interconnect applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Thermal instability of nanocrystalline Cu enables Cu-Cu direct bonding in interconnects at low temperature
    Wang, Y.
    Huang, Yu-Ting
    Liu, Y. X.
    Feng, Shien-Ping
    Huang, M. X.
    SCRIPTA MATERIALIA, 2022, 220
  • [42] Investigation of Low-Temperature Cu-Cu Direct Bonding With Pt Passivation Layer in 3-D Integration
    Liu, Demin
    Kuo, Tsung-Yi
    Liu, Yu-Wei
    Hong, Zhong-Jie
    Chung, Ying-Ting
    Chou, Tzu-Chieh
    Hu, Han-Wen
    Chen, Kuan-Neng
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2021, 11 (04): : 573 - 578
  • [43] Enhancement of Low-Temperature Cu-Cu Bonding by Metal Alloy Passivation in Ambient Atmosphere
    Hsu, Mu-Ping
    Chen, Chih-Han
    Hong, Zhong-Jie
    Lin, Tai-Yu
    Hung, Ying-Chan
    Chen, Kuan-Neng
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (08) : 1500 - 1503
  • [44] Electromigration and Temperature Cycling Tests of Cu-Cu Joints Fabricated by Instant Copper Direct Bonding
    Shie, Kai-Cheng
    Hsu, Po-Ning
    Li, Yu-Jin
    Tu, K. N.
    Lin, Benson Tzu-Hung
    Chang, Chia-Cheng
    Chen, Chih
    IEEE 71ST ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2021), 2021, : 995 - 1000
  • [45] Development of high-performance Cu nanoparticle paste and low-temperature sintering for Cu-Cu bonding
    Huang, Jiaqiang
    Ning, Zhiling
    Yu, Caiping
    Liu, Dongjing
    Liu, Yujie
    Xiao, Dawei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2025, 36 (09)
  • [46] Low-Temperature Cu-Cu Direct Bonding Using Pillar-Concave Structure in Advanced 3-D Heterogeneous Integration
    Yang, Yu-Tao
    Chou, Tzu-Chieh
    Yu, Ting-Yang
    Chang, Yu-Wei
    Huang, Tai-Yuan
    Yang, Kai-Ming
    Ko, Cheng-Ta
    Chen, Yu-Hua
    Tseng, Tzyy-Jang
    Chen, Kuan-Neng
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2017, 7 (09): : 1560 - 1566
  • [47] Low Temperature Cu-Cu Bonding Using an Intermediate Sacrificial Sn Layer
    Wang, Zilin
    Shi, Yunfan
    Wang, Zheyao
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (01) : 116 - 119
  • [48] Investigation of Low Temperature Co-Co Direct Bonding and Co-Passivated Cu-Cu Direct Bonding
    Liu, Demin
    Mei, Kuan-Chun
    Hu, Han-Wen
    Tsai, Yi-Chieh
    IEEE 72ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2022), 2022, : 187 - 193
  • [49] Highly reliable Cu-Cu low temperature bonding using SAC305 solder with rGO interlayer
    Yin, Xiang
    Wu, Chunyan
    Zhang, Zhenyu
    Yang, Wenhua
    Xie, Chao
    Yang, Xiaoping
    Huang, Zhixiang
    MICROELECTRONICS RELIABILITY, 2022, 129
  • [50] Low temperature Cu-Cu direct bonding for 3D-IC by using fine crystal layer
    Sakai, Taiji
    Imaizumi, Nobuhiro
    Miyajima, Toyoo
    2012 2ND IEEE CPMT SYMPOSIUM JAPAN, 2012,