Weak-form inference for hybrid dynamical systems in ecology

被引:0
作者
Messenger, Daniel [1 ]
Dwyer, Greg [2 ]
Dukic, Vanja [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA
关键词
multi-scale model; hybrid systems; data-driven modelling; system identification; parameter estimation; WSINDy; NUCLEAR POLYHEDROSIS-VIRUS; MODEL SELECTION; DIFFERENTIAL-EQUATIONS; PATHOGEN INTERACTIONS; INSECT; DENSITY; MOTH; IDENTIFICATION; LEPIDOPTERA; OUTBREAKS;
D O I
10.1098/rsif.2024.0376
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two timescales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (Lymantria dispar dispar).
引用
收藏
页数:31
相关论文
共 50 条
  • [11] Dynamical properties of hybrid systems simulators
    Sanfelice, Ricardo G.
    Teel, Andrew R.
    AUTOMATICA, 2010, 46 (02) : 239 - 248
  • [12] Generalized solutions to hybrid dynamical systems
    Sanfelice, Ricardo G.
    Goebel, Rafal
    Teel, Andrew R.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (04) : 699 - 724
  • [13] Incremental Stability of Hybrid Dynamical Systems
    Biemond, J. J. Benjamin
    Postoyan, Romain
    Heemels, W. P. Maurice H.
    van de Wouw, Nathan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) : 4094 - 4109
  • [14] Hybrid nonnegative and compartmental dynamical systems
    Haddad, WM
    Chellaboina, V
    Nersesov, SG
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2002, 8 (06) : 493 - 515
  • [15] Identification of a Class of Hybrid Dynamical Systems
    Massaroli, Stefano
    Califano, Federico
    Faragasso, Angela
    Risiglione, Mattia
    Yamashita, Atsushi
    Asama, Hajime
    IFAC PAPERSONLINE, 2020, 53 (02): : 875 - 882
  • [16] The complementarity class of hybrid dynamical systems
    Heemels, WPMH
    Brogliato, B
    EUROPEAN JOURNAL OF CONTROL, 2003, 9 (2-3) : 322 - 360
  • [17] Refinements of Hybrid Dynamical Systems Logic
    Platzer, Andre
    RIGOROUS STATE-BASED METHODS, ABZ 2023, 2023, 14010 : 3 - 14
  • [18] Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems
    Linderman, Scott W.
    Johnson, Matthew J.
    Miller, Andrew C.
    Adams, Ryan P.
    Blei, David M.
    Paninski, Liam
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 914 - 922
  • [19] deBInfer: Bayesian inference for dynamical models of biological systems in R
    Boersch-Supan, Philipp H.
    Ryan, Sadie J.
    Johnson, Leah R.
    METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (04): : 511 - 518
  • [20] Variational Bayesian inference for partially observed stochastic dynamical systems
    Wang, B.
    Titterington, D. M.
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2008 (IW-SMI 2008), 2009, 143