Res50-SimAM-ASPP-Unet: A Semantic Segmentation Model for High-Resolution Remote Sensing Images

被引:0
|
作者
Cai, Jiajing [1 ,2 ]
Shi, Jinmei [1 ]
Leau, Yu-Beng [2 ]
Meng, Shangyu [3 ]
Zheng, Xiuyan [4 ]
Zhou, Jinghe [1 ]
机构
[1] Hainan Vocat Univ Sci & Technol, Coll Informat Engn, Haikou 571126, Peoples R China
[2] Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Malaysia
[3] Univ Kebangsaan Malaysia, Sch Informat Sci & Technol, Bangi 43600, Selangor, Malaysia
[4] Guangzhou Baiyun Ind & Commercial Technician Coll, Dept Informat Engn, Guangzhou 510000, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Remote sensing; Feature extraction; Semantic segmentation; Accuracy; Interpolation; Residual neural networks; Computer architecture; Computational modeling; Training; Image coding; Segmentation of high-resolution remote sensing images; multi-scale void space pyramid pool ASPP module; attention mechanism SimAM module; Res50-SimAM-ASPP-Unet; EXTRACTION; ATTENTION; NETWORKS; NET;
D O I
10.1109/ACCESS.2024.3519260
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High-resolution remote sensing images contain intricate details and complex backgrounds, presenting challenges for traditional segmentation methods, which often struggle with accurate classification and contextual understanding. To address these issues, this study introduces the Res50-SimAM-ASPP-Unet model, a semantic segmentation approach for high-resolution remote sensing image processing tasks. The model integrates ResNet50 as the encoding layer of Unet for robust feature extraction, adds the SimAM attention mechanism to selectively enhance relevant details, and incorporates the ASPP module in the decoding layer to capture multi-scale contextual information. The methodology part analyzes the common ResNet model, the attention mechanism module, and the multi-scale feature extraction module, respectively, and then designs experiments to show the necessity and optimal position of adding Res50, SimAM, and ASPP. Comparative experiments on the LandCover.ai dataset demonstrate that the proposed model significantly outperforms common semantic segmentation networks, achieving a MIoU of 81.1%, MPA of 88.2%, Accuracy of 95.1%, Precision of 92.65%, and an F1 score of 90.45%. These results highlight the model's effectiveness in delivering high accuracy and adaptability across diverse remote sensing environments, establishing it as a valuable tool for applications requiring precise and scalable image segmentation.
引用
收藏
页码:192301 / 192316
页数:16
相关论文
共 50 条
  • [21] SERNet: Squeeze and Excitation Residual Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaoyan
    Li, Linhui
    Di, Donglin
    Wang, Jian
    Chen, Guangsheng
    Jing, Weipeng
    Emam, Mahmoud
    REMOTE SENSING, 2022, 14 (19)
  • [22] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON SPARSE SELF-ATTENTION
    Sun, Li
    Zou, Huanxin
    Wei, Juan
    Li, Meilin
    Cao, Xu
    He, Shitian
    Liu, Shuo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3492 - 3495
  • [23] A Semantic Segmentation Method for High-resolution Remote Sensing Images Based on Encoder-Decoder
    Yang, Jingyu
    Zhao, Liang
    Dang, Jianwu
    Wang, Yangping
    Yue, Biao
    Gu, Zongliang
    2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 98 - 103
  • [24] A Frequency Attention-Enhanced Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhong, Jianyi
    Zeng, Tao
    Xu, Zhennan
    Wu, Caifeng
    Qian, Shangtuo
    Xu, Nan
    Chen, Ziqi
    Lyu, Xin
    Li, Xin
    REMOTE SENSING, 2025, 17 (03)
  • [25] Enhanced Lightweight End-to-End Semantic Segmentation for High-Resolution Remote Sensing Images
    Dong, He
    Yu, Baoguo
    Wu, Wanqing
    He, Chenglong
    IEEE ACCESS, 2022, 10 : 70947 - 70954
  • [26] EFCNet: Ensemble Full Convolutional Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Chen, Li
    Dou, Xin
    Peng, Jian
    Li, Wenbo
    Sun, Bingyu
    Li, Haifeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] Semantic Segmentation of High-Resolution Remote Sensing Images Using Multiscale Skip Connection Network
    Ma, Bifang
    Chang, Chih-Yung
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3745 - 3755
  • [28] MFRNet: A Multipath Feature Refinement Network for Semantic Segmentation in High-Resolution Remote Sensing Images
    Xiao, Tao
    Liu, Yikun
    Huang, Yuwen
    Yang, Gongping
    REMOTE SENSING LETTERS, 2022, 13 (12) : 1271 - 1283
  • [29] Fully convolutional DenseNet with adversarial training for semantic segmentation of high-resolution remote sensing images
    Guo, Xuejun
    Chen, Zehua
    Wang, Chengyi
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (01)
  • [30] LIGHT-WEIGHT ATTENTION SEMANTIC SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE SENSING IMAGES
    Liu, Siyu
    He, Changtao
    Bai, Haiwei
    Zhang, Yijie
    Cheng, Jian
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2595 - 2598