Coordinated Grid-Forming Control Strategy for VSC-HVDC Integrating Offshore Wind Farms Based on Hybrid Energy

被引:0
|
作者
Zhu, Ying [1 ]
Wang, Zhili [1 ]
Li, Bin [1 ]
机构
[1] Hohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Capacitors; Wind farms; Frequency control; Rotors; Voltage control; Converters; Kinetic energy; Coordinated control strategy; decoupling control; grid-forming (GFM) control; rotor kinetic energy; secondary frequency drop; supercapacitor (SC); VSC-HVDC integrating offshore wind farms;
D O I
10.1109/JESTIE.2024.3394478
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For integrating large-scale offshore wind farm system more effectively, issues as insufficient inertia energy and dc voltage variation caused by traditional grid-forming (GFM) control in voltage source converter based HVDC (VSC-HVDC) have to be settled urgently. This article proposes an improved coordinated GFM control strategy based on hybrid energy to improve grid frequency and dc voltage stability. In terms of grid-side VSC control, an improved virtual inertia control method consisting of additional capacitor structure and matching GFM control is proposed, which can decouple dc voltage and energy of dc capacitor in VSC-HVDC. By establishing coupling relationship between additional capacitor energy and grid frequency, the matching GFM control can fully utilize its energy and provide better inertia support. In terms of wind farm control, a three-stage coordinated control based on hybrid energy is designed. During stage1 and stage2, fast inertial support and primary frequency regulation are achieved through rotor kinetic energy. The supercapacitor is controlled to quickly increase or decrease active power to suppress sudden output power change caused by exiting rotor kinetic energy control in stage3. Finally, a comparative simulation is performed using MATLAB/Simulink to verify the effectiveness and advantages of the proposed strategy.
引用
收藏
页码:1350 / 1361
页数:12
相关论文
共 50 条
  • [41] Grid-Forming Control of Offshore Wind Farms Connected With Diode-Based HVdc Links Based on Remote Active Power Regulation
    Wang, Kailun
    Song, Qiang
    Zhao, Biao
    Yu, Zhanqing
    Zeng, Rong
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (02) : 1315 - 1327
  • [42] A Novel Transient Control Strategy for VSC-HVDC Connecting Offshore Wind Power Plant
    Moawwad, Ahmed
    El Moursi, Mohamed Shawky
    Xiao, Weidong
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2014, 5 (04) : 1056 - 1069
  • [43] Operation and control of VSC-HVDC multiterminal grids for offshore wind
    Egea-Alvarez, Agusti
    Junyent-Ferre, Adria
    Gomis-Bellmunt, Oriol
    Liang, Jun
    Ekanayake, Janaka
    Jenkins, Nicholas
    PROCEEDINGS OF THE 2011-14TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE 2011), 2011,
  • [44] Operation and Control of VSC-HVDC Multiterminal Grids for Offshore Wind
    Egea-Alvarez, Agusti
    Junyent-Ferre, Adria
    Gomis-Bellmunt, Oriol
    Liang, Jun
    Ekanayake, Janaka
    Jenkins, Nicholas
    EPE JOURNAL, 2013, 23 (02) : 34 - 40
  • [45] Improved Frequency Control Strategy for Offshore Wind Farm Integration via VSC-HVDC
    Zeng, Rui
    Wang, Yizhen
    ENERGIES, 2022, 15 (17)
  • [47] A Novel Transient Control Strategy for VSC-HVDC Connecting Offshore Wind Power Plant
    Moawwad, Ahmed
    El Moursi, Mohamed
    Xiao, Weidong
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [48] Adaptive current injecting strategy for VSC-HVDC connected offshore wind farms during symmetrical faults
    Xu, Bin
    Gao, Houlei
    Peng, Fang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 157
  • [49] A coordinated control strategy for fault ride-through of wind farm integration based on VSC-HVDC
    Li, Qi
    Song, Qiang
    Liu, Wenhua
    Rao, Hong
    Xu, Shukai
    Li, Xiaolin
    Dianwang Jishu/Power System Technology, 2014, 38 (07): : 1739 - 1745
  • [50] Coordinated LVRT control of wind power generation system based on VSC-HVDC
    Zhang, Xinyin
    Hu, Minqiang
    Wu, Zaijun
    Hao, Sipeng
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2014, 34 (03): : 138 - 143