Stacked ensemble machine learning approach for electroencephalography based major depressive disorder classification using temporal statistics

被引:0
|
作者
Ahmed, Nader Nisar [1 ]
Bhat, Tejas Kadengodlu [1 ]
Powar, Omkar S. [1 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Biomed Engn, Manipal, Karnataka, India
关键词
Major depressive disorder; depression; electroencephalography; stacked ensemble learning; machine learning; time domain; MONTGOMERY-ASBERG DEPRESSION; RATING-SCALE; EEG; INVENTORY; ALGORITHM; BDI;
D O I
10.1080/21642583.2024.2427028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Major depressive disorder (MDD) is a serious and widespread mental health condition that remains challenging to diagnose accurately. Traditional psychological assessments, which can be subjective and sometimes unreliable, emphasize the need for more objective diagnostic tools. In this study, we present a machine learning (ML) model designed to diagnose depression by analysing statistical time-domain features extracted from Electroencephalography (EEG) data. The model is built using a stacked ensemble ML approach, incorporating nine-base estimators with various meta-classifiers. Through multiple trials, the model achieved an accuracy of 98.01%, with precision and recall rates of 97.78% and 96.61%, respectively with Adaptive Boosting (AdaBoost) as the meta-classifer. We also investigated the effects of data sampling and the number of base classifiers on the model's performance. The findings demonstrate that the stacked ensemble approach significantly enhances the accuracy of diagnosing MDD and that the proposed model outperforms the methods used in previous studies. This model offers a promising tool for psychologists and medical professionals to diagnose depression more reliably, potentially leading to better treatment outcomes for those affected by the disorder.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Remote Sensing Image Classification Based on Ensemble Extreme Learning Machine With Stacked Autoencoder
    Lv, Fei
    Han, Min
    Qiu, Tie
    IEEE ACCESS, 2017, 5 : 9021 - 9031
  • [22] Diagnosis of Major Depressive Disorder Using Machine Learning Based on Multisequence MRI Neuroimaging Features
    Li, Qinghe
    Dong, Fanghui
    Gai, Qun
    Che, Kaili
    Ma, Heng
    Zhao, Feng
    Chu, Tongpeng
    Mao, Ning
    Wang, Peiyuan
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (05) : 1420 - 1430
  • [23] A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder
    Khodayari-Rostamabad, Ahmad
    Reilly, James P.
    Hasey, Gary M.
    de Bruin, Hubert
    MacCrimmon, Duncan J.
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (10) : 1975 - 1985
  • [24] Cardiovascular Disease Classification Based on Machine Learning Algorithms Using GridSearchCV, Cross Validation and Stacked Ensemble Methods
    Pattanayak, Satyabrata
    Singh, Tripty
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT I, 2022, 1613 : 219 - 230
  • [25] Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
    Belov, Vladimir
    Erwin-Grabner, Tracy
    Aghajani, Moji
    Aleman, Andre
    Amod, Alyssa R.
    Basgoze, Zeynep
    Benedetti, Francesco
    Besteher, Bianca
    Buelow, Robin
    Ching, Christopher R. K.
    Connolly, Colm G.
    Cullen, Kathryn
    Davey, Christopher G.
    Dima, Danai
    Dols, Annemiek
    Evans, Jennifer W.
    Fu, Cynthia H. Y.
    Gonul, Ali Saffet
    Gotlib, Ian H.
    Grabe, Hans J.
    Groenewold, Nynke
    Hamilton, J. Paul
    Harrison, Ben J.
    Ho, Tiffany C.
    Mwangi, Benson
    Jaworska, Natalia
    Jahanshad, Neda
    Klimes-Dougan, Bonnie
    Koopowitz, Sheri-Michelle
    Lancaster, Thomas
    Li, Meng
    Linden, David E. J.
    MacMaster, Frank P.
    Mehler, David M. A.
    Melloni, Elisa
    Mueller, Bryon A.
    Ojha, Amar
    Oudega, Mardien L.
    Penninx, Brenda W. J. H.
    Poletti, Sara
    Pomarol-Clotet, Edith
    Portella, Maria J.
    Pozzi, Elena
    Reneman, Liesbeth
    Sacchet, Matthew D.
    Saemann, Philipp G.
    Schrantee, Anouk
    Sim, Kang
    Soares, Jair C.
    Stein, Dan J.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [26] Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
    Vladimir Belov
    Tracy Erwin-Grabner
    Moji Aghajani
    Andre Aleman
    Alyssa R. Amod
    Zeynep Basgoze
    Francesco Benedetti
    Bianca Besteher
    Robin Bülow
    Christopher R. K. Ching
    Colm G. Connolly
    Kathryn Cullen
    Christopher G. Davey
    Danai Dima
    Annemiek Dols
    Jennifer W. Evans
    Cynthia H. Y. Fu
    Ali Saffet Gonul
    Ian H. Gotlib
    Hans J. Grabe
    Nynke Groenewold
    J Paul Hamilton
    Ben J. Harrison
    Tiffany C. Ho
    Benson Mwangi
    Natalia Jaworska
    Neda Jahanshad
    Bonnie Klimes-Dougan
    Sheri-Michelle Koopowitz
    Thomas Lancaster
    Meng Li
    David E. J. Linden
    Frank P. MacMaster
    David M. A. Mehler
    Elisa Melloni
    Bryon A. Mueller
    Amar Ojha
    Mardien L. Oudega
    Brenda W. J. H. Penninx
    Sara Poletti
    Edith Pomarol-Clotet
    Maria J. Portella
    Elena Pozzi
    Liesbeth Reneman
    Matthew D. Sacchet
    Philipp G. Sämann
    Anouk Schrantee
    Kang Sim
    Jair C. Soares
    Dan J. Stein
    Scientific Reports, 14
  • [27] GWAS-BASED MACHINE LEARNING APPROACH TO PREDICT DULOXETINE RESPONSE AND REMISSION IN MAJOR DEPRESSIVE DISORDER
    Maciukiewicz, Malgorzata
    Marshe, Victoria
    Hauschild, Anne-Christine
    Foster, Jane A.
    Rotzinger, Susan
    Kennedy, James L.
    Kennedy, Sidney H.
    Mueller, Daniel J.
    Geraci, Joseph
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S843 - S843
  • [28] Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models: Deep Learning Approach
    Uyulan, Caglar
    Erguzel, Turker Tekin
    Unubol, Huseyin
    Cebi, Merve
    Sayar, Gokben Hizli
    Nezhadasad, Mehdi
    Tarhan, Nevzat
    CLINICAL EEG AND NEUROSCIENCE, 2021, 52 (01) : 38 - 51
  • [29] Toward interpretability of machine learning methods for the classification of patients with major depressive disorder based on functional network measures
    Andreev, Andrey V.
    Kurkin, Semen A.
    Stoyanov, Drozdstoy
    Badarin, Artem A.
    Paunova, Rossitsa
    Hramov, Alexander E.
    CHAOS, 2023, 33 (06)
  • [30] Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features
    Shim, Miseon
    Jin, Min Jin
    Im, Chang-Hwan
    Lee, Seung-Hwan
    NEUROIMAGE-CLINICAL, 2019, 24