Automatic Botnet Attack Identification Based on Machine Learning

被引:3
|
作者
Li P.H. [1 ]
Xu J. [1 ]
Xu Z.Y. [1 ]
Chen S. [1 ]
Niu B.W. [2 ]
Yin J. [1 ]
Sun X.F. [1 ]
Lan H.L. [1 ]
Chen L.L. [3 ]
机构
[1] Jiangsu Police Institute, Nanjing
[2] Public Security Department of Jiangsu Province, Nanjing
[3] The University of Adelaide, Adelaide, 5005, SA
来源
Computers, Materials and Continua | 2022年 / 73卷 / 02期
关键词
Honeypot; log; machine learning; network attack;
D O I
10.32604/cmc.2022.029969
中图分类号
学科分类号
摘要
At present, the severe network security situation has put forward high requirements for network security defense technology. In order to automate botnet threat warning, this paper researches the types and characteristics of Botnet. Botnet has special characteristics in attributes such as packets, attack time interval, and packet size. In this paper, the attack data is annotated by means of string recognition and expert screening. The attack features are extracted from the labeled attack data, and then use K-means for cluster analysis. The clustering results show that the same attack data has its unique characteristics, and the automatic identification of network attacks is realized based on these characteristics. At the same time, based on the collection and attribute extraction of Botnet attack data, this paper uses RF, GBM, XGBOOST and other machine learning models to test the warning results, and automatically analyzes the attack by importing attack data. In the early warning analysis results, the accuracy rates of different models are obtained. Through the descriptive values of the three accuracy rates of Accuracy, Precision, and F1_Score, the early warning effect of each model can be comprehensively displayed. Among the five algorithms used in this paper, three have an accuracy rate of over 90%. The three models with the highest accuracy are used in the early warning model. The research shows that cyberattacks can be accurately predicted. When this technology is applied to the protection system, accurate early warning can be given before a network attack is launched. © 2022 Tech Science Press. All rights reserved.
引用
收藏
页码:3847 / 3860
页数:13
相关论文
共 50 条
  • [31] Botnet Detection Approach Using Graph-Based Machine Learning
    Alharbi, Afnan
    Alsubhi, Khalid
    IEEE ACCESS, 2021, 9 (09): : 99166 - 99180
  • [32] Multiclass Machine Learning Based Botnet Detection in Software Defined Networks
    Tariq, Farhan
    Baig, Shamim
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (03): : 150 - 156
  • [33] Automatic Identification of the Working State of High-Rise Building Machine Based on Machine Learning
    Pan, Xi
    Zhao, Tingsheng
    Li, Xiaowei
    Zuo, Zibo
    Zong, Gang
    Zhang, Longlong
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [34] An Ensemble Machine Learning Botnet Detection Framework Based on Noise Filtering
    Liu, Tzong-Jye
    Lin, Tze-Shiun
    Chen, Ching-Wen
    JOURNAL OF INTERNET TECHNOLOGY, 2021, 22 (06): : 1347 - 1357
  • [35] A Dimensionality Reduction Approach for Machine Learning Based IoT Botnet Detection
    Susanto
    Stiawan, Deris
    Arifin, M. Agus Syamsul
    Rejito, Juli
    Idris, Mohd. Yazid
    Budiarto, Rahmat
    2021 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTERSCIENCE AND INFORMATICS (EECSI) 2021, 2021, : 26 - 30
  • [36] DETECTING BOTNET VICTIMS THROUGH GRAPH-BASED MACHINE LEARNING
    Millar, Kyle
    Simpson, Lachlan
    Cheng, Adriel
    Chew, Hong Gunn
    Lim, Cheng-Chew
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 46 - 51
  • [37] Automatic Identification and Quantitative Characterization of Primary Dendrite Microstructure Based on Machine Learning
    Wan, Weihao
    Li, Dongling
    Wang, Haizhou
    Zhao, Lei
    Shen, Xuejing
    Sun, Dandan
    Chen, Jingyang
    Xiao, Chengbo
    CRYSTALS, 2021, 11 (09)
  • [38] Automatic pest identification system in the greenhouse based on deep learning and machine vision
    Zhang, Xiaolei
    Bu, Junyi
    Zhou, Xixiang
    Wang, Xiaochan
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [39] The Machine Learning Ensemble for Analyzing Internet of Things Networks: Botnet Detection and Device Identification
    Han, Seung-Ju
    Yoon, Seong-Su
    Euom, Ieck-Chae
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (02): : 1495 - 1518
  • [40] Android botnet detection using machine learning
    Rasheed M.M.
    Faieq A.K.
    Hashim A.A.
    Rasheed, Mohammad M. (mohammad.rasheed@uoitc.edu.iq), 1600, International Information and Engineering Technology Association (25): : 127 - 130